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Abstract In this paper, we explore the use of synthesized landmark maps for ab-
solute localization of a smart wheelchair system outdoors. In this paradigm, three-
dimensional map data are acquired by an automobile equipped with high precision
inertial/GPS systems, in conjunction with light detection and ranging (LIDAR) sys-
tems, whose range measurements are subsequently registered to a global coordi-
nate frame. The resulting map data are then synthesized a priori to identify robust,
salient features for use as landmarks in localization. By leveraging such maps with
landmark meta-data, robots possessing far lower cost sensor suites gain many of the
benefits obtained from the higher fidelity sensors, but without the cost. We show that
by using such a map-based localization approach, a smart wheelchair system outfit-
ted only with a 2-D LIDAR and encoders was able to maintain accurate, global pose
estimates outdoors over almost 1 km paths.

1 Introduction

We are interested in developing smart wheelchair systems capable of autonomous
navigation in unstructured, outdoor environments. Our primary work to date in this
area has been with the Automated Transport and Retrieval System (ATRS) [1].
ATRS enables independent mobility for drivers in wheelchairs by automating the
stowing and retrieval of the driver’s wheelchair system. While ATRS has been com-
mercialized, and its smart-chair system does in fact navigate autonomously, its au-
tonomy is limited to an area immediately adjacent to the host vehicle. We would
like to build on these results to support a greater range of smart-chair applications.
Key to this objective is a robust means for outdoor localization.

Localization is a fundamental enabling technology for mobile robotics, and as a
result a very active research area. Although the problem in structured, indoor envi-
ronments might be considered solved, robust localization outdoors is still an open
research problem. While the community has made significant strides recently in
terms of vehicle autonomy outdoors [2], much of this has been achieved through
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sensor suites using tightly coupled inertial/GPS navigation systems costing up to
$100K or more. Such a solution is impractical in terms of both size and cost for
applications such as ours. In the absence of reliable GPS measurements, fall-back
strategies are similar to those used indoors and involve extracting strong features
from RADAR, LIDAR, vision sensors, etc., and tracking their relative position and
uncertainty estimates over time [3, 4, 5]. However, such approaches are more fragile
when used outdoors due to the absence of continuous structure and the much larger
problem scale.

Urban environments represent an interesting and important middle-ground as
over 80% of the U.S. population resides in cities and suburbs [6]. The availability
of GPS measurements in these areas for pose estimation can typically be assumed,
but multi-path errors from buildings, trees, etc., can significantly compromise its
accuracy. Fortunately, these same structures can be used as landmark features to
yield accurate relative position estimates. In this paper, we investigate a paradigm
where a smart wheelchair system relying upon lower cost sensors localizes with the
assistance of three-dimensional maps generated by a vehicle equipped with a high
fidelity sensor suite. These maps are synthesized a priori to identify robust, salient
features which can be used as landmarks for robot localization. By leveraging these
maps, the wheelchair gains many benefits obtained with the higher-fidelity sensors
but without the cost.

2 Related Work

Our work relates to research efforts in three-dimensional mapping as well as robot
localization and mapping. Generating three-dimensional maps of urban areas has
been investigated by several groups, so there is significant previous work that can
be leveraged [7, 8, 9, 10, 11, 12]. Unlike most of this work, our focus is generating
and processing three-dimensional maps with respect to a global frame, which will be
reusable and readily extended by any user. With the explosion of data services, we
expect the availability of such maps to be commonplace in the future [13]. Our mo-
tivation is that by leveraging such maps, lower fidelity sensors could be employed.
This has been demonstrated routinely indoors (e.g., MCL with sonar vs. SLAM with
LIDAR), and we believe the analogy will hold outdoors. Many features in urban en-
vironments are viable candidates for landmarks. For example, corner features are
often used in EKF localization and mapping approaches as their position can be
reduced to a single point [14]. Building facades and walls might also be used [8].
Indeed even signage can be detected and recognized [15]. While we are ultimately
interested in integrating aspects of each of these features within our synthesized map
representation, in this paper we limit our focus to pole features as landmarks. In this
context, pole features would correspond to street lamps, trees, parking meters, street
signs, etc. Such features are prevalent in most urban areas.

The use of poles features as landmarks has been investigated by other researchers.
This includes the work of [16, 17], among others. The primary focus of these efforts
was SLAM with a ground vehicle (i.e., an automobile) where “cylinder” features
were segmented using vision and/or LIDAR systems, and tracked over time. This
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technique enabled mobile localization and mapping in outdoor, unstructured envi-
ronments over relatively long distances (e.g., 100s of meters). We propose to build
upon these efforts by first building large-scale three-dimensional maps, synthesizing
these maps to identify strong landmark features, introducing a refinement stage to
improve map consistency, and then leveraging these maps with an ultimate goal of
improving localization performance outdoors.

3 Map Generation

Data Acquisition. Our vehicle for data acquisition was “Little Ben,” which previ-
ously had served as the Ben Franklin Racing Team’s entry in the DARPA Urban
Challenge [18]. Vehicle pose was provided by an Oxford Technical Solutions RT-
3050, which uses a Kalman filter based algorithm to fuse inertial measurements,
GPS updates with differential corrections, and odometry information from the host
vehicle. It provides 6-DoF pose updates at 100 Hz with a stated accuracy of 0.5
meters circular error probable (CEP). Range and bearing measurements from a pair
of roof mounted, vertically scanning Sick LMS291-S14 LIDAR systems were then
registered to the current vehicle pose to generate high-resolution range maps. The
two LIDARs are highlighted (circled red) in Fig. 1 (Left). We used two LIDARs to
improve map reconstruction by reducing scene occlusion and for redundant mea-
surements to reduce noise effects. During data acquisition, Ben was driven at 8-12
km/hr. This corresponded to a LIDAR scan spacing of ≈ 4-6 cm, which allowed
even thin pole features (e.g., street signs, parking meters) to be captured reliably.

Fig. 1 Development Platforms. (Left) Vehicle used for data acquisition. Ben integrates an OXTS
RT-3050 and a pair of vertically scanning Sick LMS291-S14 LIDARs (circled red). (Center-Right)
Our smart-chair platform integrates LIDAR, vision, GPS, and odometry sensors. Its computer in-
terface and on-board power distribution enable a range of sensors and accessories to be quickly
integrated for prototyping purposes.

LIDAR Calibration. Ultimately, we need to register the acquired range scans to a
common world frame W . This registration requires knowledge of the extrinsic pa-
rameters (rotation R and translation T ) of both the vehicle frame V , and the front
and back LIDAR frames (F,B) versus time with respect to W . The vehicle param-
eters RW

V (t),TW
V (t) are estimated directly by the OXTS RT-3050 at 100 Hz. As the

LIDARs are related to the vehicle frame by a rigid transformation, we need only re-
cover the extrinsic parameters of the LIDARs with respect to the vehicle frame. For
this work, we developed a novel approach to simplify the calibration process. Noting
that points in the world frame and LIDAR frames were related by rigid transforma-
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tions, we could recover the LIDAR extrinsic parameters with a sufficient number of
point correspondences between the front and back LIDARs. To facilitate correspon-
dence tracking over time, 6 poles on a ≈ 50×100 meter calibration loop were used
as landmarks. On each pole, two retro-reflective targets were placed 1 meter apart
for a total of 12 target points XT = [x1,y1,z1, . . . ,x12,y12,z12]T in W . These targets
were automatically segmented from the environment by thresholding the LIDAR
remission measurements. A sample landmark pole is shown in Fig. 2 (left).

Point correspondences were obtained by driving multiple cycles around our cal-
ibration loop. Our calibration process then consisted of two stages. The first was
to remove deterministic error between successive calibration loops caused by GPS
jumps. This step was accomplished by using the first loop to generate reference
landmark positions X1 = [x1,1,y1,1,z1,1, . . . ,x12,1,y12,1,z12,1]T , where xi, j denotes the
estimated x-position of the ith target in W during the jth calibration loop. The deter-
ministic shift S j = [sx j,sy j,sz j]T of the jth loop was estimated by

S∗j = argmin
S
||X1−X j−S j×12||2 (1)

where S j×12 ∈ R36 is the estimated deterministic error S j replicated for each target
point. This minimization problem was solved using a least-squares approach. S j was
then treated as a bias, and the value of X j for each loop was adjusted accordingly.

The second stage was to remove the influences of random error in the calibration
process. In doing so, we needed to estimate the extrinsic parameters for each LIDAR
(RV

B ,TV
B ,RV

F ,TV
F ), as well as the positions of our 12 targets (XT ) in W . We note that

for the same world point xW ,

RW
V F(RV

F xF +TV
F )+TW

V F = RW
V B(RV

BxB +TV
B )+TW

V B (2)

where the V F and V B subscripts are used to denote the vehicle transformation to the
world frame corresponding to the different vehicle poses when xW was observed by
the front and back LIDARs, respectively. Thus, we can solve for both the LIDAR ex-
trinsics as well as the target positions with a minimum of 16 point correspondences
between the front and back LIDARs. Since the vehicle pose varies with each cali-
bration loop, 12 unique correspondences can be obtained from each loop cycle. As a
result, a large number of correspondences can be acquired very quickly. We solved
for (2) using a non-linear minimization solver. However, one final enhancement was
added first to remove measurement outliers. For this, we employed a “constrained”
RANSAC approach [19], where we instantiated each model hypothesis with a small
number (2-4) of correspondences at random from each target. This enhancement
ensured that the error residuals were balanced across the entire calibration loop.

Fig. 2 shows representative results of merging front and back LIDAR data using
the measured extrinsics (center) and those estimated from the calibration process
(right). Improvements in data fusion and scene reconstruction from the calibration
process are clearly visible. The mean absolute error (MAE) for the error residuals
between the two LIDAR reprojections was 12.67 cm. As the performance of the
pose system is 50 cm CEP, these results were considered satisfactory.
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Fig. 2 (Left) One of six landmark poles used during the LIDAR calibration process. The retro-
reflective targets could be automatically segmented to track correspondences across multiple cali-
bration loops. Reconstruction results before and after our calibration phase. Improvements in data
fusion with the front (red) and back (blue) LIDARs from the calibration phase are clearly visible.

Landmark Synthesis. Segmenting pole features was accomplished using a two-
step clustering approach: (1) recursively cluster points within each scan, and (2)
merge clusters in successive scans where appropriate. In both steps, a Euclidean
distance threshold was used as the clustering criterion. For a cluster to be accepted
as a pole feature, validation gates were placed on cluster size. Furthermore, only
strongly vertical clusters were accepted by examining the covariance matrix C of the
associated feature points’ positions. Specifically, the eigenvector associated with the
largest eigenvalue λmax of C should be close to [0,0,1]T . Only after clearing these
validation gates was the cluster accepted as a landmark in the synthesized map.

4 Wheelchair Localization

The smart-chair used in this work is based upon an Invacare M91 Pronto power
wheelchair with Mk5 electronics. It integrates high resolution optical encoders, a
Hokuyo UTM-30LX LIDAR system, a 1024x768 Point Grey digital video camera,
and a Garmin 18 WAAS enabled GPS system. For this work, the UTM-30LX was
the wheelchair’s sole exteroceptive sensor. When compared to the ubiquitous Sick
LMS2xx LIDARs, it is extremely compact. In our current integration, the LIDAR
and camera system are mounted on the opposite arm as the manual joystick con-
troller as shown in Fig. 1 (center). The configuration is comparable in size to the
joystick controller box.
Landmark Detection. In our localization paradigm, the wheelchair employs LI-
DAR and odometry sensors in conjunction with the synthesized landmark map.
Implicit in this approach is the assumption that the landmarks can be reliably seg-
mented. However, unlike the landmark synthesis phase, the wheelchair LIDAR must
rely entirely upon two-dimensional scan data. To compensate for this, our land-
mark detection strategy used two approaches dependent upon pole feature geom-
etry. The first step in either approach was clustering registered point returns from
the wheelchair LIDAR scan in Euclidean space. Cluster diameters were then used
to discriminate between larger diameter pole features (trees, telephone poles, street
lamps, etc.) and narrower ones (parking meters, traffic sign posts, etc.).

Larger diameter clusters with 5 or more points were fit as circle features. Several
additional validation gates followed based upon circle geometry and residual fitting
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error before a feature was accepted as a landmark candidate. We found empirically
that larger diameter landmarks could be reliably detected at ranges ≈ 75× the fea-
ture radius, meaning that a landmark with a radius of 10 cm would typically be de-
tected at a range of about 7.5 meters. Circle fitting was not appropriate for smaller
diameter clusters. As such, these features were tracked over time. If they were per-
sistent and no other clusters were detected within a given distance threshold, they
were accepted as landmark candidates. Using such an approach, smaller diameter
features could reliably be detected at ranges < 5 meters. Candidate landmarks were
passed to the data association module for additional processing.
Data Association. There are inherent limitations in using two-dimensional LIDAR
measurements to segment three-dimensional landmarks. As a result, the landmark
detection process may erroneously validate other environmental features as pole fea-
tures. The impact of these false positives on localization performance was mitigated
through a data association phase.

Several sources of uncertainty exist in the synthesized landmark locations within
our map. These sources include uncertainty introduced by the pose system, errors
in LIDAR extrinsic calibration, LIDAR range errors, and noise associated with the
landmark synthesis process itself to name but a few. Uncertainty in landmark posi-
tion was modeled by associating a covariance matrix Σl with the position of each
landmark while Σw and Σo denoted covariance matrices associated with the uncer-
tainty in wheelchair pose and LIDAR range and bearing observations, respectively.
With these so defined, we used the Mahalanobis distance D between the predicted
and observed sensor measurements as our quality metric for data association, de-
fined as

D =
√

zT (Σo +HwΣwHT
w +HlΣlHT

l )−1z (3)

where, Hw and Hl are the Jacobians of the observation model with respect to
wheelchair pose and landmark location, respectively,

Hw =

[
xw−xl

zr

yw−yl
zr

0
yl−yw

zr2
xw−xl

zr2 −1

]
, Hl =

[
− xw−xl

zr
− yw−yl

zr

− yl−yw
zr2 −

xw−xl
zr2

]
(4)

and z = zl−zo is the difference between the predicted and actual range and bearing
measurements for the wheelchair LIDAR. A threshold on D served to filter out po-
tential false positives observed during the landmark detection phase. For the case of
closely located landmarks where multiple possible detection-landmark associations
might be possible, the association minimizing the total assignment cost was used.
Localization Approach. Extended Kalman Filters (EKFs) have been one of the
most popular techniques for state estimation in mobile robotics [3, 20, 14], and
we took a similar approach for estimating the wheelchair pose x = [xw,yw,θw]T .
In the prediction step, linear and angular velocities (v,ω) were estimated from the
encoders using a differential drive model for the wheelchair. For the correction step,
the observation functions were based upon LIDAR estimates for the range zr and
bearing zα to the segmented landmark at position (xl ,yl)
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zr =
√

(xw− xl)2 +(yw− yl)2, zα = arctan
(

yw− yl

xw− xl

)
−θw (5)

and the Kalman gain was calculated as K = PHw
T (HwPHw

T + HlΣlHl
T + Σo)−1

where Hw and Hl were as defined in (4). The process then followed a traditional
EKF implementation with updates of 2-5 Hz dependent upon vehicle velocity.
Landmark Position Refinement. A shortcoming with relying heavily upon GPS
for map generation is that changes in satellite geometry/visibility can lead to
“jumps” in vehicle pose. These discontinuities affect map consistency. One ap-
proach to address this would be to integrate additional sensing onto the data ac-
quisition platform and run SLAM in parallel with the data acquisition phase [12].
We propose an alternate refinement stage where SLAM is actually run by the map
client – in our case the wheelchair – during an initial route traversal akin to a learn-
ing phase. This is something we envision would be done by the wheelchair user’s
care provider prior to enabling completely autonomous operations. An advantage of
this approach is that the landmark refinement would be tuned to the actual sensor ge-
ometries employed by the client vehicle. For our implementation, we extended our
EKF localization using a SLAM approach as in [3, 20] to further refine the landmark
positions. The landmark locations were then updated with the SLAM-refined land-
mark positions and covariance ΣL estimates. While this did not improve the global
map accuracy, it significantly improved the map consistency.

5 Experimental Results

To investigate the viability of the proposed approach, our first experiments were
conducted in the parking lots around Lehigh’s Stabler Arena. Admittedly, this area
was not representative of urban environments. However, it served as a low-traffic
proving ground with sufficient pole features to first validate the concept. Fig. 3 (left)
shows the raw registered range data acquired by driving Ben through the area. These
data were then synthesized as outlined above, and the resulting map with embedded
landmarks is shown at Fig. 3 (right). Validating the fidelity of this reconstruction is
difficult due to the lack of absolute ground truth. However, we measured the dis-
tance between 25 pairs of landmarks using a Bosch DLE50 laser distance measure
and compared these to the distances of corresponding synthesized landmark pairs.
The mean absolute difference between the sets was 7.2 cm. We also reviewed the
reliability of the landmark synthesis approach. All 71 pole features present in the
area surveyed were positively detected and synthesized into the map.

Fig. 3 Registered raw (left) and synthesized map data (right). The relative distance differences
between synthesized landmark pairs and their real-world counterparts was about 7 cm.
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Using the original synthesized map and landmark positions, the wheelchair was
manually driven over a route network 960 meters in length at a fast walking speed
(1.6 m/s). This first loop constituted the landmark refinement stage discussed in
Section 4, and the wheelchair localized using an EKF SLAM approach with the
segmented landmark positions. Using SLAM, the wheelchair was able to accurately
maintain its pose over the entire 960 meter loop. We then repeated this same ex-
periment 3 separate times using map-based localization with the updated landmark
position and uncertainty estimates. All other parameters for data association and lo-
calization remained fixed. Representative results are at Fig. 4 (left). The landmark
positions are denoted by red circles. The wheelchair path as estimated by the map-
based localization approach is denoted by the blue line. The path as estimated by
the wheelchair’s own GPS is also shown for comparison purposes (green line). The
initial pose estimate of the GPS was also used to initialize the pose for map local-
ization. Using the SLAM-refined landmark positions, all 3 trials were successfully
completed. To characterize the localization accuracy, the wheelchair was driven over
6 ground-truth points (shown as “+”) whose positions relative to landmarks were
measured by hand. The average position errors was 20 cm, with 3 < 1σ , 5 < 2σ ,
and all 6 < 3σ based upon the covariance estimates for ΣW and Σl .

Fig. 4 Localization results using refined (left) and original landmark position estimates (right).
Improving the consistency of landmark positions dramatically improved localization performance.

To motivate the need for the landmark refinement phase, we also ran these same
trials using map-based localization (not SLAM) with the original landmark posi-
tions. Each of these trials ended in failure. This typically occurred at a portion of
the course where the inter-landmark spacing required the wheelchair to rely upon
dead reckoning for over 20 meters of travel. Significant error and uncertainty in
wheelchair pose accumulated during this time, resulting in an incorrect feature as-
sociation. This is shown in Fig. 4 (right). However, the open-loop travel was not
the sole culprit. From a subsequent analysis, we determined that a fairly significant
GPS shift occurred during the data acquisition phase for building the map. As a re-
sult, a fraction of the map exhibited a shift >1 meter with respect to the maps initial
coordinate frame. This shift significantly contributed to the data association failure,
and the correct robot pose could not be recovered by the EKF. As the SLAM algo-
rithm updated the landmark positions on the fly, it was robust to this shift error. The
subsequent landmark refinement stage mitigates the impact of GPS jump.
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Our final experiment involved a similar test in South Bethlehem, PA adjacent to
Lehigh’s campus. This was a representative urban environment, with a significantly
higher density of landmarks than seen during the Stabler testing. During this test,
the wheelchair was manually driven approximately 720 meters along the sidewalk at
a velocity of≈ 1 m/s. Results from this trial using SLAM are shown at Fig. 5, where
the landmarks positions (red circles), the SLAM estimated path (blue line) and GPS
path (green line) are superimposed on a satellite image. While completing the loop
was prevented by ongoing building construction, the end position was consistent
with localization estimates. Again, results compared favorably to the wheelchair’s
WAAS-corrected GPS estimate. We have not been able to repeat this trial using
localization with the SLAM-enhanced map due to seasonal weather conditions, but
expect to in the near future.

Fig. 5 Map-based localization of the wheelchair (blue line) vs. GPS position estimates (green line).

6 Discussion

In this paper, we investigated the acquisition, synthesis and application of three-
dimensional maps by a smart wheelchair for map-based localization. Since the maps
were registered to a global frame, they provide a means for absolute position estima-
tion in urban areas even in the absence of GPS. In our experiments, our wheelchair
system was able to maintain accurate pose estimates after traveling hundreds of me-
ters using such an approach. While we are satisfied with the results to date, we do
realize this is just a first step. Pole features were an obvious first choice for land-
marks, and we are now beginning to synthesize additional features into the map
(e.g., building corners). We are also interested in vision based signage detection, as
these can provide nearly-unique IDs for inferring global position. We also assume
the ability to automatically segment pedestrians from the environment. Our current
implementation fuses results from vision and LIDAR systems. The camera uses the
Haar-like feature based classifier for face detection from OpenCV [21], while the
LIDAR segments candidate clusters based upon geometry constraints. Individually,
both systems have high rates of false positives. However, this can be reduced dra-
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matically by only accepting tracks when both sensors report a detection. A downside
is that significant false-negatives remain. We are continuing to refine this approach.
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