
Dynamic Sensor Planning and Control

for Optimally Tracking Targets

John R. Spletzer Camillo J. Taylor

GRASP Laboratory { University of Pennsylvania

Philadelphia, PA 19104, USA

fspletzer, cjtaylorg@grasp.cis.upenn.edu

Abstract

This paper presents an approach to the problem of actively controlling the con�gu-

ration of a team of mobile agents equipped with cameras so as to optimize the quality of

the estimates derived from their measurements. The issue of optimizing the robots' con-

�guration is particularly important in the context of teams equipped with vision sensors

since most estimation schemes of interest will involve some form of triangulation.

We provide a theoretical framework for tackling the sensor planning problem, and

a practical computational strategy inspired by work on particle �ltering for implement-

ing the approach. We then extend our framework by showing how modeled system

dynamics and con�guration space obstacles can be handled. These ideas have been ap-

plied to a target tracking task, and demonstrated both in simulation and with actual

robot platforms. The results indicate that the framework is able to solve fairly diÆcult

sensor planning problems online without requiring excessive amounts of computational

resources.

1 Introduction

The idea of using teams of small, inexpensive robotic agents to accomplish various
tasks is one that has gained increasing currency in the �eld of robotics research. Fig-
ure 1 shows a picture of a Clodbuster robot which is based on a standard remote
controlled motion platform and out�tted with an omnidirectional video camera { its
only sensor. Using teams of these modest robots, fairly sophisticated applications such
as distributed mapping, formation control and distributed manipulation have been
successfully demonstrated [1, 2].

One of the more interesting aspects of these platforms is that estimates for relevant
quantities in the world are formed by combining information from multiple distributed
sensors. For example, the robots in the team shown in Figure 1 obtain an estimate for
their relative con�guration by combining the angular measurements obtained from all
of the omnidirectional images and performing a simple triangulation operation. Similar
techniques can be used to estimate the locations of other features in the environment,
such as the box they are manipulating. In fact, one could choose to view the team in
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Figure 1: A single Clodbuster robot (left) and the team performing a distributed manipula-
tion task.

Figure 1 as a three-eyed stereo rig where the individual eyes can actually be moved on
the 
y.

This capability invites the following question: given that the robot platforms are
mobile, how should they be deployed in order to maximize the quality of the estimates
returned by the team? This is a particularly important question in the context of
robots equipped with vision sensors since most of the estimation techniques of interest
in this case are based on some form of triangulation.

Similar questions arise when one considers the problem of integrating information
from a sea of distributed sensors. Given that there is some cost associated with trans-
mitting and processing data, which sensor readings should one use to form an estimate
for the parameters of interest?

This paper presents a theoretical framework for discussing such questions and a
practical computational approach, inspired by work on particle �ltering, for tackling
them. The suggested approach could be viewed as an application of the theory of
games since the problem of controlling the robots' con�guration is reformulated as the
problem of optimizing a quality function that re
ects the expected value of assuming a
particular formation. Results obtained by applying this approach to a target tracking
task are presented in Section 3.

It is important to note that while the approach was developed to handle the prob-
lems faced by teams of robots equipped with vision sensors, it could also be used to
deploy robots equipped with other types of sensors like laser range �nders or sonar
systems.

1.1 Related Work

The focus of this research is a probabilistic framework which exploits the degrees of
freedom a�orded by robot mobility to actively manage sensor positions for improved
state estimation. We demonstrate its e�ectiveness in an optimal target tracking task.
\Optimal tracking" can be de�ned using various metrics. We choose to minimize the
expected error in tracking target positions. Since the measurements of multiple robots
are combined to estimate target pose, this relates strongly to work in sensor fusion.

In our target tracking task, robots rely on omnidirectional cameras for tracking
groups of targets. Merging measurements from multiple vision sensors for improved
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state estimation was considered by Bajcsy and others under the heading of Active
Perception. Improvements were seen in various performance metrics, including ranging
accuracy [3, 4]. Our framework can be viewed as an extension of this paradigm to
distributed mobile robotics.

Durrant-Whyte et al pioneered work in sensor fusion and robot localization. This
yielded signi�cant improvements to methods used in mobile robot navigation, local-
ization and mapping [5, 6]. Thrun et al have also contributed signi�cant research to
these areas [7, 8]. The work of both groups has emphasized probabilistic techniques
for data fusion - with a recent focus on particle �ltering methods. Our approach is also
probabilistic, and it too leverages particle �ltering methods. However, our work dis-
tinguishes itself from traditional data fusion techniques in that the sensors themselves
are actively managed to improve the quality of the measurements obtained prior to
the data fusion phase, resulting in corresponding improvements in state estimation.

Since the sensors are actively managed, our work relates to research in on-line sensor
planning as well. Relevant to our approach was a methodology for distributed control
proposed by Parker [9]. This framework - Cooperative Multi-Robot Observation of
Multiple Moving Targets (CMOMMT) - attempted to maximize the collective time
that each target was being observed by at least one robot.

The theory of games has also provided inspiration for similar research in target
tracking. The pursuit-evasion problem was investigated by LaValle et al and Fabiani
et al [10, 11]. Both examined the task of maintaining target visibility in a cluttered
environment known a priori to the pursuer. LaValle's approach generated trajectories
that minimized a loss function which grew when the target became occluded. Fabiani's
motion strategy was based on the expected maximum value of a corresponding utility
function U . Of the two, Fabiani's work is more relevant. The value of U was a�ected
by uncertainty in the target's position, which was indirectly a�ected by uncertainty in
the pursuer's position. As a result, the pursuer trajectory was in
uenced not just by
target position, but also by known landmark positions in the environment which could
be used to reduce uncertainty in target pose.

In all three of these cases, the optimization criterion was based on maintaining
target observability, rather than the quality of the observation. Additionally, the work
of LaValle and Fabiani was limited to the case of a single pursuer/evader. In theory,
both could be extended to multiple agents. However, in practice the resulting explosion
in computational complexity would be prohibitive. In contrast, the complexity of our
framework is implementation dependent, and may be tuned by the user to scale very
eÆciently in terms of the number of robots and targets.

In the Next Best View (NBV) problem, sensor placement is of primary concern [12,
13]. Given, for example, previous range scans of an object, an NBV system attempts
to determine the next best position of the scanner for acquiring the object's complete
surface geometry. As in our framework, the emphasis is optimizing sensor placement.
However, NBV is intended for use in a static environment. Inherent in our approach
is the ability to handle dynamic scenes which makes it more akin to a control law for
distributed sensors.
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2 Developing the Framework

2.1 A Theoretical Approach

This section describes the theoretical framework used to discuss the problem of sensor
deployment. In order to ground the terminology, we will describe how various elements
in the framework relate to the scenario depicted in Figure 2. In this example, three
robots are tasked with localizing a single moving target.
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Figure 2: Target localization by a robot team.

Let Cr denote the con�guration space of the robot platforms. In this case, one can
consider the vector formed by concatenating the positions and orientations of the three
platforms with respect to some base frame of reference [x1; y1; �1; x2; y2; �2; x3; y3; �3]

T .
Let � 2 Cr denote an element of this con�guration space. Similarly let Cw denote the
con�guration space of the parameters under consideration. In Figure 2, this space is
particularly simple since we need only consider the position of the moving target with
respect to the base frame denoted by the vector [xt; yt]

T . In general, however, this space
can be much more complicated. Let ! 2 Cw denote an element of this con�guration
space.

Let Ẑ represent the set of all possible sensor measurements, and let ẑ 2 Ẑ denote
our measurement vector. In this example, ẑ corresponds to the vector formed by
concatenating the three angles measured by the robots [�1; �2; �3]

T . The hat serves
to remind us that these measurements are corrupted by noise. It is assumed that
the designer has some model for the noise process, which is given in the form of a
conditional probability density function P (ẑj�; !). This function allows us to predict
the distribution of measurements as a function of � and !.

Let Est : Cr � Ẑ ! Cw denote a function that produces an estimate of the target's
position, !̂, from the noisy measurements, ẑ, and the robots' con�guration, �. Disp :
Cw � Cw ! R+ is a function which returns an indication of the disparity between
an estimated value !̂ and the actual value !. For our target tracking example, an
appropriate function might be the Euclidean distance Disp(!; !̂) = jj! � !̂jj2. Other
applications may require more sophisticated error metrics.

P (!) denotes a probability density function on the con�guration space Cw which
can be used to model prior information about the values of the parameters of inter-
est. For example, one may have some information about where the target could be
based on prior measurements or a dynamic model for the target's motion. Given this
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terminology, one can de�ne a quality function Q(�) as follows:

Q(�) =

Z
Cw

Z
Z

Disp(!;Est(�; ẑ))P (ẑj�; !)P (!)dẑd! (1)

This function captures how the expected error in the estimate, !̂, varies as the robots
con�guration changes. Note that there are, of course, several alternative de�nitions
for this quality function that are equally reasonable. One could consider the maximum
expected error in the estimate or the median expected error. Di�erent choices for Q(�)
may be more appropriate in certain situations.

With these notions in place, one can formulate the problem of choosing an appro-
priate con�guration for the robots as an optimization problem as shown below:

min
�2�

Q(�) (2)

The goal in this case is to �nd a choice of � 2 �, where � � Cr, which minimizes
the quality function Q(�). Limiting the optimization to a subset of Cr, �, allows us to
model situations where certain con�gurations cannot be achieved due to obstacles in
the environment, sensor constraints or limitations on the range of motion of the robots.

Note that even though the approach is being discussed in the context of target
tracking, the framework is general enough to be applied to a wide range of sensor
planning problems. The speci�cs of the task would be re
ected in the de�nitions of Cr,
Cw, ẑ, Est and Disp.

2.2 A Computational Solution

For most interesting systems the optimization problem given in equation 2 is diÆcult to
solve analytically. However, it is possible to approximate this process computationally.
To do this we draw inspiration from prior work on particle �ltering [14].

In particle �ltering, probability distributions such as P (!) are approximated by
sets of tuples (!j ; �j), where !j is a single sample from Cw and �j a weight that re
ects
the likelihood of !j representing the state !. By making use of this approximation, we
can replace the integrals of equation 1 with a summation:

Q(�) �
1

N

NX
j=1

Disp(!j; Est(�; ẑ)) (3)

where N corresponds to the number of samples selected at random from P (!). By
choosing N suÆciently large, this single summation can re
ect the e�ects of both
integrations in equation 1.

The computation of Q(�) is outlined in Algorithm 1. For a more concrete expla-
nation, we refer to Figure 3. To estimate Q(�), a sample ! is chosen at random from
P (!), and projected from target space to each robot's image frame (3a). The corre-
sponding image measurements are then corrupted with noise from our sensor model,
and projected back into target space using out Est function (3b). We can obtain the
disparity between this new sample !̂ and our original sample from Disp(!; !̂) (3c).
This procedure is repeated for the N samples. Using jj! � !̂jj2 as our Disp function,
Q(�) then re
ects the expected mean-squared error in target position.
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(a)                                            (b)              (c)

Figure 3: Evaluating Q(�). A sample ! is taken randomly from P (!) and projected into the
sensor frames (a), corrupted with noise from our sensor model and reprojected as !̂ (b), so
that Disp(!; !̂) can be calculated (c). This is repeated for N random samples.

A simple but e�ective approach to optimizing the robot con�guration is to approx-
imate the gradient of the quality function, @Q

@�
, by sampling its value in the vicinity of

the current robot con�guration. The control law governing robot motion would then
be

_� / �
@Q

@�
(4)

Gradient based approaches can often lead to local minima - and consequently sub-
optimal performance - in traditional optimization problems, and local minima do in
fact exist when tracking multiple targets. However, in a dynamic environment Q(�)
is actually rede�ned whenever the estimated positions of the targets with respect to
one another change. As a result, we often have only a single time-step for optimizing
a given Q(�), and in such cases can generate \piece-wise optimal" trajectories using a
gradient approach. Alternatively one could employ standard optimization techniques,
like the Simplex method [15] to choose the best achievable robot con�guration in the
vicinity for the next time instant.

Algorithm 1 Calculate Q(�) for a given P (!)
err ( 0
for i = 1 to N do

!i (2 P (!i) fChoose a sample at random from P (!i)g
ẑi (2 P (ẑj�; !) fChoose a sample at random from P (ẑj�; !)g
!̂i ( Est(�; ẑi) fGenerate an estimate for !̂g
err ( err +Disp(!i; !̂i)

end for

Q( err
N

Note that it is possible to incorporate knowledge of system dynamics into this
framework in the usual manner. In the CONDENSATION algorithm described by
Isard and Blake [14], a particle distribution P (!) is propagated at each time-step
according to a known dynamic model. This same P (!) serves as the assumed input
for our framework, and establishes a complementary relationship between sensing and
control, as the same particle sets used for tracking targets are also used to control the
robot team for improving future tracking estimates.
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3 Experimental Results

3.1 Simulation Experiments

In order to demonstrate the utility of the proposed framework, we �rst apply it to three
sensor planning problems in simulation: tracking a single point target, tracking multiple
point targets, and tracking a box. We then extend the point target tracking problem by
incorporating a dynamical model for the target. Finally, we integrate motion planning
techniques for local obstacle avoidance and demonstrate target tracking in a cluttered
workspace. Each of these scenarios is explained in more detail below.

For the sake of simplicity we have assumed in all of these scenarios that the robots
can accurately measure their positions and orientations with respect to one another,
since it is the robot positions relative to the targets that are of interest. Note that we
could consider error in the positioning of the robots within this framework by adding
extra noise terms to the measurements or by including the robots con�guration as part
of the state to be estimated.
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Figure 4: Generated trajectories (left)and disparity measurements for 2 robots tracking a
static point target.

3.1.1 Tracking a single point target

For the �rst scenario we consider 2 robots equipped with omnidirectional cameras,
and tasked with tracking a single target. Cr represents the concatenation of the robot
positions, Cw the target position, and ẑ the 2 angles to the target measured by the
members of the robot team. We assume ẑ to be corrupted with random noise generated
from our sensor model. Est(�; ẑ) returns an estimate for the target position, !̂, which
minimizes the squared disparity with the measurements, ẑ, and Disp(!; !̂) simply
returns the Euclidean distance between the estimated target position and the actual
value.

In our simulations, robot motions are constrained by the maximum robot velocity
and the robots positions are limited by mandating a minimum stando� distance to
the target. These serve to de�ne the valid con�guration space for the robots, �.
Results from Matlab simulations for two robots with both static and dynamic targets
are provided below. For these trials, 100 exemplars were used to approximate P (!),
and the sensor model (for all trials) was assumed to be Gaussian noise with � = 1Æ.
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Figure 5: Generated trajectories (left) and disparity measurements for 2 robots tracking an
unpredictable moving point target.

Figure 4 shows the static target case for two robots. Trajectories for this symmetric
case are predictable and consistent with simulation results, as are the dramatic drops in
estimation error over time. Similar results are obtained for the case of an unpredictably
moving target, as shown in Figure 5 (Extension 1).
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Figure 6: Generated trajectories and summed disparity measurements for 5 robots tracking
3 point targets.

3.1.2 Tracking multiple point targets

For the second scenario, we examine the more interesting problem of n robots tracking
m independently moving, unpredictable point targets. This problem can be tackled
in much the same manner. Cw now represents the concatenation of possible target
positions, and ẑ the corresponding n � m angles measured from robots to targets.
Est(�; ẑ) approximates the position of every target, andDisp(!; !̂) returns the summed
disparities between estimated and true target positions.

Results from a pair of simulation runs can be found in Figures 6 and 7 (Extension
2). In these trials, 3 unpredictable targets were tracked by 5 and 4 robots, respectively.

Note the behavior of the robots as they move from their original positions to more
advantageous vantage points. The robots automatically split o� to track targets with-
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Figure 7: Generated trajectories and summed disparity measurements for 4 robots tracking
3 point targets.

out any need for sophisticated switching rules for arbitrating robot-target assignment.
The �nal con�guration is simply a consequence of the de�nition of the Q(�) function
that the system attempts to optimize. Note also that it is not possible in these scenarios
to assign two robots to every target so the robots distribute themselves automatically
to come up with the best composite estimate. This is signi�cant, as relatively com-
plex tracking behaviors can be implicitly encoded into Q(�), and the need for explicit
switching controllers is mitigated.
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Figure 8: Generated trajectories and summed disparity measurements for 2 robots tracking
a static box.

3.1.3 Tracking a box

For the third case, we consider the problem of using the measurements from the robots
to estimate the con�guration of a box in the scene. This example demonstrates how
the proposed framework can be applied to scenarios where the state estimate is not
simply the concatenation of a set of point locations. Here the con�guration space Cw
is identi�ed with SE(2) and elements of this set denote the position and orientation
of the box. The robots can measure the angles to all of the visible box corners, ẑ.
The estimation function Est(�; ẑ) as always is nonlinear, and minimizes the dispar-
ity between the predicted angles to the visible corners and the actual measurements.

9



Disp(!; !̂) returns the sum of the distances between the recovered box corners and
the actual corners. For these trials, 20 \box" exemplars were used to estimate P (!).
Sample simulation results can be found in Figures 8 and 9.

In both cases we can see that the robots not only migrate to positions more advan-
tageous for tracking the corner features, but also for maximizing the number of visible
features. The latter e�ect is a result of the Est function using only the visible corners
to estimate the box pose. Inherently better estimates are obtained when more features
are available.
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Figure 9: Generated trajectories and summed disparity measurements for 3 robots tracking
a static box.

3.1.4 Incorporating the Dynamical Model

Integrating target dynamics into sensor planning often provides signi�cant improve-
ments in tracking performance. Dynamical models can be obtained using an approxi-
mation of target dynamics, or through \learned" models as demonstrated in [14]. For
our simulations, we employed the former approach.

Consider the case of n observers on the ground tracking a ball traveling through the
air with some unknown initial velocity Vt. We again model these observers as robots
equipped with omnidirectional cameras. In this case, Cr represents the concatenation
of the robot positions which are constrained to operations in the x-y plane, Cw � R3

represents the space of target positions. The measurement vector ẑ denotes the n

azimuth and elevation angle pairs to the target measured by members of the robot
team.

We approximated the dynamical model for the ball d!̂
dt

by assuming constant accel-
eration under gravity g and estimating its velocity from position measurements over
time. Actual ball dynamics d!

dt
in the simulation were slightly more realistic and also

modeled drag e�ects. The corresponding equations of motion are given in Equations 5
and 6, where � is density, andm, d, CD, and v0 are the mass, diameter, drag coeÆcient,
and current velocity of the ball, respectively.

d!̂

dt
= v0t+

gt2

2
(5)

d!

dt
= v0t+

�d2t2(4�ballgd� 3CD�airv
2
0)

24m
(6)
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Figure 10: Ground observer trajectories optimally tracking an aerial target.

As before, P (!) was initially approximated by a randomly generated set of exem-
plars that were constrained to lie within the intersection of the sensors' error cones,
and all of the particles were given equal weight. The distribution was then propagated
using standard particle �ltering techniques. At each time step t, deterministic drift
was applied to P (!) based on this dynamic model, followed by stochastic di�usion to
account for model uncertainty. We sampled P (!) at this point, as it allowed the robot
pose �t+1 to be optimized over the expected target position !t+1 - not over the current
target position !t. That is, the robots moved so as to optimize their ability to localize
the target at the next time instant based upon where they predicted the target would
move.

In our simulations, robot motions were constrained by the maximum robot velocity
Vr � Vt. This served to de�ne the limits of the set over which the optimization occurs,
�. Results from a sample Matlab simulation for three robots are provided below. For
this trial, 100 exemplars were used to approximate P (!), and the sensor model was
assumed to be Gaussian noise with � = 1Æ.

Figure 10 (Extension 3) shows a representative simulation run of three robots track-
ing a single target. Robot trajectories are ineÆcient from a \distance-traveled" view-
point, as they attempt to optimize position estimates over the target's entire 
ight
rather than its endpoint. Figure 11 shows the error in measured target position for
the same target trajectory from both stationary (dashed line) and moving (solid line)
observers. When viewed in this light, the bene�ts of the otherwise curious robot tra-
jectories become readily apparent. Reductions in measurement errors by a factor of
4-5 over the stationary case clearly demonstrate the e�ectiveness of the integrated
optimization/dynamical modeling approach.
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Figure 11: Measurement errors from stationary (dashed line) and moving (solid line) robot
observers. Reductions in the latter case are signi�cant across the entire target trajectory.

3.1.5 Tracking targets in a cluttered workspace

In the simulation results we have presented thus far, constraints to Cr were limited
solely to pursuer dynamics and a mandatory target stando� distance. This is adequate
for operations in an uncluttered workspace, but does not handle the more generic
case where obstacles are present. To address the resulting additional constraints on
Cr (and Cw), we assumed that the robots were able to obtain accurate information
about obstacles in their immediate vicinity. This was consistent with our approach
of generating locally optimal trajectories, and did not require a priori information of
obstacle locations or a global map of the environment. � was then de�ned by the local
obstacle-free con�guration space.

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

Target 

Pursuers 

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

Figure 12: Tracking a point target in a cluttered environment. Signi�cant reductions to
target position error were still realizable even in the presence of obstacles.

Next, we applied standard motion planning techniques for collision avoidance in
this local neighborhood [16]. More speci�cally, the trajectory was modeled as the sum
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of attractive and repulsive force vectors Fatt and Frep, respectively. Fatt corresponded
to the velocity vector _q generated from our optimization approach. We allowed local
obstacles detected by the robot to impose a repulsive force vector Frep onto this desired
trajectory. The magnitude of Frep was proportional to the robot velocities and inversely
proportional to the distances from obstacles. The resultant force F = Fatt + Frep rep-
resented the compromise robot trajectories as in
uenced by the presence of obstacles.
This e�ectively constrained the optimization of � 2 �. A representative simulation
trial can be found in Figure 12 (Extension 4).

While the presence of obstacles in this example constrained the robots' motion, the
control law automatically adjusted their trajectories in order to compensate for these
limitations and provide improved state estimates.

3.2 Experiments with the Clodbusters

The framework was implemented on our team of Clodbuster robots shown in Figure 1.
These use omnidirectional vision for sensing, on-board Pentium III computers, PXC200
framegrabbers, and 802.11b wireless networking for inter-robot communications. In
these experiments, a pair of pursuers tracked a third robot serving as a moving target.
Two sets of trials were conducted to demonstrate operations in both cluttered and
uncluttered environments.

PXC200 Image
Acquisition

Color 
Segmentation

Edge
Segmentation

Cooperative
Localization

Obstacle
Detection

Coop Target
Tracking

Standard Thread

802.11b Thread

Obstacle Mode

ρ∂
∂Q

Estimator

ρ�
Servo
Signal

Figure 13: Experimental architecture used by each pursuer. The 802.11b blocks correspond
to threads where cooperation - and as a result communication - with other robots is required.

The system architecture used by each pursuer robot is illustrated in Figure 13.
It employed our Live-Object framework - a programming paradigm where objects en-
capsulate not only relevant algorithms and data, but also a thread within which these
algorithms execute and communicate. The robots relied on YUV color segmentation to
isolate one another in the camera images. Since our model assumes that the positions
of the tracking robots are known, the pursuers communicated their relative tracking
vectors to each other. This cooperation allowed each to estimate the other's relative
position and orientation. With the pursuers localized, each then communicated its
relative bearing to the target which was then cooperatively tracked. The complete
localization process ran at 15Hz.
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In the cluttered workspace trials, it was also necessary for each pursuer to estimate
the position of obstacles. This was done by generating a rangemap to edge features
in the environment as outlined in our previous work [17]. Target and pursuer robots
were then discriminated from obstacles using their relative pose as estimated during
the localization phase.

Experimental implementation followed closely with that used in the corresponding
simulation experiment. Derivative estimation techniques were used to approximate
the gradient of Q(�) for optimizing the pursuers' headings. The maximum robot speed
and a prescribed stando� distance served to de�ne � for a given time-step. The
sensor model assumed angular measurements obtained by the robots were corrupted
with additive errors drawn from a normal distribution with a standard deviation of
� = 0:5Æ. For the cluttered workspace trials, obstacles exhibited repulsive forces when
the separation was less than 1 meter. Using 100 particles to approximate the probability
P (!) over the target con�guration space, we were able to compute locally optimal robot
con�gurations at a rate of 15Hz.

Figure 14: Trajectory for two pursuer robots tracking a moving target robot in an obstacle-
free environment.

A representative trial from our obstacle-free experiments is shown in Figures 14
and 15 (Extension 5). The former shows a series of images from an overhead view
of the scene, while the latter shows the corresponding position error estimates. Both
the trajectory and the dramatic drop in the error estimate correlate well with the
corresponding simulation results presented previously in Figure 5.

Figures 16 and 17 (Extension 6) show the corresponding trial for a cluttered workspace.
The e�ect on the motion of the right pursuer robot was signi�cant. In contrast to the
obstacle-free case, its motion was constrained to a much narrower region. However, the
control scheme automatically adjusted the path of the left pursuer to compensate for
this limitation. As a result, the estimated target tracking error still fell dramatically.

It should again be noted that no explicit controllers were needed for maneuvering
the formation. Trajectories were implicitly generated by Q(�), which captured the
notion of a good con�guration.
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Figure 15: Estimated RMS position error (cm) vs. time for the single target case.

Figure 16: Trajectory for two pursuer robots tracking a moving target robot in a cluttered
workspace. The left pursuer adapts its trajectory to the right pursuer's mobility constraints.

4 Complexity Analysis

Referring to Algorithm 1, we can see that the computational complexity will depend
heavily on the Est function used and the number of times Q(�) must be computed by
our Q � optimizer function. Thus, the complexity is implementation dependent and
can be tuned by the user based upon available computational resources and desired
estimator robustness.

For our target tracking example, let m represent the number of robots, and n the
number of targets. Our implementation employed a least-squares Est, function which
runs in O(m3) time. Finite di�erence techniques approximated @Q

@�
, and ran in O(m)

time for a total complexity of O(m4n). The framework lends itself to distributed
computation. Taking advantage of this, the workload can be divided among the m
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Figure 17: Estimated RMS position error (cm) vs. time for the single target case with
obstacles. Results are comparable to the obstacle-free case.

robots so that the time complexity for each would scale linearly in the number of
targets, and cubicly in the number of robots.

Alternately, our Est function could employ a weighted average of the O(m2) stereo
pair position estimates for each target. A straightforward weight factor is wij =

rirj
sin�ij

,

where ri is the estimated distance from robot i to the target, and �ij is the vergence
angle. This is a �rst-order approximation for stereo error from the determinant of the
Jacobian. Using a constant number of simultaneous perturbations to estimate @Q

@�
, this

scheme results in an O(m2n) complexity, or O(mn) when distributed.
These are only two possible implementations, but they demonstrate the 
exibility

of our approach. Robust estimators that scale potentially exponentially could be used
for small numbers of robots and/or targets, or more expedient estimation techniques
could be applied when computational resources are at issue. The choice is left to the
user's discretion.

5 Conclusions and Discussion

This paper presents an approach to the problem of controlling the con�guration of a
team of mobile agents so as to optimize the quality of the estimates derived from their
measurements. The ideas were applied to target tracking tasks, where a team of robots
was charged with optimally estimating the positions of a group of targets. This was
demonstrated both in simulation and on robot platforms. Results indicate that this
approach can solve fairly diÆcult sensor planning problems online without requiring
excessive amounts of computational resources.

Our approach has several nice attributes. It provides an actual measurement re-

ecting the expected error in the estimated targets' positions. This is a side-e�ect of
using a numerical representation for P (!). Also, implicit rules for switching between
robots-target assignments are embedded in the optimization of Q(�), which negates
the need for explicit switching controllers.
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Perhaps the most attractive feature of the approach is its 
exibility. It can be
used with heterogeneous sensors, as the Est and Q(�) functions abstract away speci�c
sensor characteristics. It is also scalable in the number of robots and targets, and
the computational e�ects of this scaling can be regulated by choosing appropriate
estimation and optimzation techniques.

In spite of these attributes, room for improvement still exists. The robots must
combine measurements to estimate the position of targets. So while distributed com-
putation is readily realizable, some level of centralization is inherent.

Our work to this point assumed that the robot positions � were known a priori, and
there are means to estimate the formation pose as demonstrated in Section 3.2. How-
ever these estimates themselves are subject to uncertainty. We are currently reposing
the problem within our framework as a simultaneous localization and target tracking
task to address this.

The approach was applied to target tracking tasks in both open and cluttered
workspaces. However, the latter was accomplished by merging with traditional motion
planning techniques. As a result, it was subject to similar shortcomings (e.g. becom-
ing trapped in local minima). Additionally, our work in cluttered environments only
addressed issues relating to motion planning and not occluding obstacles. The latter
topic the subject of ongoing research.

Lastly, to this point we have assumed a sensor model with an omnidirectional �eld
of view (FOV). Adapting our approach to limited FOV sensors involves assimilating
optimal assignment techniques with trajectory generation. This is also the topic of
ongoing work.

Acknowledgments: This material is based upon work supported by the National
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Appendix

Index to multi-media Extensions The multi-media extensions to this article can
be found online following the hyperlinks from www.ijrr.org.
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