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Summary. In this paper, we present the Automated Transport and Rati@ystem (ATRS).
ATRS represents an alternative to van conversions for aptidendrivers with lower body dis-
abilities. It employs robotics and automation technoledfet integrate into a standard mini-
van or sport utility vehicle (SUV). At the core of ATRS is a “ant’ wheelchair that navigates
between the driver's position and a powered lift at the rédahe vehicle - eliminating the
need for an attendant. From an automation perspectivenamiously docking the wheelchair
onto the lift platform presented the most significant techhchallenge during system devel-
opment. This was driven by geometry constraints, whichtéchiclearance between the chair
wheels and the lift platform rails. To solve this problem, eveployed an LMS291 LIDAR in
conjunction with an Extended Kalman Filter for reliable awturate wheelchair localization.
Coupled with a hybrid controller design, the system has gmaw be exceptionally robust.
This was validated through extensive simulation and erpemtal results, culminating in a
three-day demonstration at the 2006 World Congress andditigpoon Disabilities where the
system completed over 300 consecutive cycles without aréail

1 Introduction and Motivation

According to the U.S. Bureau of Transportation, over sixlionl people with dis-
abilities have difficulties in obtaining the transportatibey need [1]. This is a major
contributor to the unemploymentrate of the disabled pamranationally, estimated
at over 65% by the U.S. Census Bureau [2].

A van conversion currently represents the sole personadpi@tation solution
for an individual in a wheelchair. Van conversions starthwat standard van pro-
duced by a major automotive manufacturer. The van is sulesgigumodified or
“converted” by another company, usually a specialized titgl@quipment manu-
facturing company or mobility dealer. The modifications peemanent, and include
extensive changes to the chassis, frame, and interiorcaypiodifications include
removing and lowering the vehicle floor, and relocatingéejng major subsystems
such as the gas tank, fuel system, and heating/coolingragsté the vehicle [3].
While enabling independent mobility, van conversionsespnt a costly and unsafe
transportation solution for wheelchair users.
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To eliminate these shortcomings, we have developed a témbased alter-
native to van conversions for wheelchair users: the Autethdransport and Re-
trieval System (ATRS). ATRS employs robotics and autonmatezhnologies, and
can be integrated into a standard mini-van or sport utilligle (SUV). At the core
of ATRS is a “smart” wheelchair system that autonomouslyigetes between the
driver’s position and a powered lift at the rear of the vehid primary benefit of
this paradigm is the operator and chair are separated duehigle operations as
well as entry/exit. This eliminates the potential for in@s or deaths caused by both
improper securement (as the operator is seated in a crdst sesat system) as well
as lift malfunctions. Furthermore, by eliminating tiesticandpermanentehicle
modifications associated with van conversions, ATRS widit@ignificantly less.

2 Related Work

Extensive work has been done in order to increase the safgbls| of power
wheelchairs while minimizing the level of human interventiIn these systems, the
human operator is responsible for high-level decisiondenthie low-level control of
the wheelchair is autonomous.

The Tin Man system [4], developed by the KISS Institute, m#tes some of the
navigation and steering operations for indoor environmertie Wheelesley project
[5], based on a Tin Man wheelchair, is designed for both im@mal outdoor environ-
ments. The chair is controlled through a graphical userfiexte that has successfully
been integrated with an eye tracking system and with singlkels scanning as input
methods. The TAO Project [6] provides basic collision aapice, navigation in an
indoor corridor, and passage through narrow doorways. Veem also provides
landmark-based navigation that requires a topological afdpe environment. The
NavChair assistive wheelchair navigation system [7] usesltback from ultrasonic
sensors and offers obstacle avoidance, door passage, hfallaaing modes. More
recently, the SmartChair [8] uses a virtual interface @igptl by an on-board projec-
tion system to implement a shared control framework thabksghe user to interact
with the wheelchair while it is performing an autonomoustas

A common theme in the above research is the robotics techndlas been ap-
plied to assist or augment the skills of the chair operatorcdntrast, the ATRS
wheelchair is in fact capable of autonomous vehicle naiogah outdoor environ-
ments. This can be realized because the operator is nevedseahe chair during
autonomous operations, and the chair always operates indingy of the automo-
bile. The former constraint mitigates operator safetyesswhile the latter provides
significant, invariant landmarks/features in an otherwisstructured environment.

3 System Overview

In describing the ATRS operational procedures, we refergaré 1. When the oper-
ator returns to his/her automobile, a keyless entry is uséxath unlock the vehicle
and to deploy the traversing driver’s seat. The operatar flositions the wheelchair,
and performs a seat-to-seat transfer (pose A). After theswtheelchair is deployed
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Fig. 1. ATRS concept diagram illustrating the primary system conguats.

to the rear of the vehicle (pose B). In our proof-of-concgptem, this side traversal
was completely autonomous [9]. In the current system —edieto colloquially as
“ATRS-Lite” — the wheelchair is remotely controlled by thehicle operator via a
joystick located at the Ul. Once the chair enters the LIDAfe4d-of-view at the
rear of the vehicle (pose C), it is automatically trackede TH then cues the opera-
tor to place the wheelchair into “docking” mode. This enalthe van-side computer
to transmit real-time control inputs to the chair over a datid RF link for reliable
docking (locking in place) onto the lift platform (pose D).itWthe chair docked,
the operator actuates the lift via the Ul — stowing the platf@nd chair into the
vehicle cargo area. The process is repeated in reverse visemlizarking from the
automobile. We should emphasize that when not operatirapauaiously, the ATRS
wheelchair is placed in “manual mode,” and operates nordifféy than any other
powered wheelchair

The primary focus of this paper is the development of a rédiabutonomous
means for docking (and undocking) the ATRS wheelchair oatal ©ff of) the vehi-
cle’s lift platform. Our current approach employs a SICK LR#-S14 LIDAR sys-
tem in conjunction with an Extended Kalman Filter (EKF) fatimating the chair
pose. EKF techniques for feature-based mobile robot Ipatidin were pioneered by
Durrant-Whyte and other®(g, [10]), and such an approach has also proven to be
well suited for our application.

4 Wheelchair Localization

To reliably execute docking under a broad range of envirartadeconditions,
wheelchair localization requires both robust feature sagation as well as accu-
rate pose estimation with respect to the lift platform. Ttegfprm mounted LMS291
LIDAR system provides bearing, range, and reflectivity nneasients that are lever-
aged for robust feature segmentation. The positions oétfeegures - in conjunction
with the control inputs to the chair - are then used as inpant&xtended Kalman
Filter that estimates the wheelchair pose over time. Detdithe localization process
are as follows.
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Fig. 2. (left) The Tracker™ lift platform with integrated LMS291. The LIDAR housing
provides both environmental protection, as well as impsabe system SNR. (right) Range
(top) and reflectivity (bottom) data from a single LIDAR scaks was typical, reflectivity
measurements alone were adequate for segmenting the tyeo freatures.

4.1 Feature Segmentation

The primary sensor used for estimating the wheelchair pagerespect to the lift
platform is a SICK LMS291 LIDAR. Figure 2 (left) illustrates typical integra-
tion of the LIDAR into the vehicle lift platform. The LMS291 easures the line-
of-sight range to objects in the environment ovel0a degree field of view with a
discretization of).5°. Each of these measurements can be written as a tuple of the
formz,, = [r,a,7]L, m = 0...180, wherer,, and~,, denote the measured range
to and reflectivity of then!” feature at a bearing af,, = % — 45° with respect

to the LIDAR sensor framé&. We exploit the reflectivity measurements to greatly
simplify the segmentation problem. A pair of target feagrg, ¢,.} made from retro-
reflective material are permanently affixed to the wheetlottzassis. When imaged
by the LIDAR, a significant portion of the incident beam is eeted directly back

to the detector, saturating the photo-diode (Figure 2)jlefthis allows a simple
threshold on reflectivityy,,.;,, to be used as the primary filter for segmenting the tar-
get features. An additional level of filtering is based upaarge constraint,,, .

As the wheelchair is presented in the immediate vicinityhef lift platform, targets

at excessive rangesg.f. > 4 meters away) can immediately be disqualified from
potential features of interest. From these two filters araiméng a ground plane
constraint, we construct a valid feature set

o {rn COS Qi

v sin an] , St Ty < Tmazy, Yn > Ymin (1)

A final level of filtering exploits a priori knowledge of thelagive geometry
of the wheelchair targets. Candidate tardgets{t;, ¢, } are identified via clustering
the candidate feature sét in Euclidean space using the actual target size (plus a
tolerance) as a constraint. Pairs of targgt$; € 1" are then examined using the
actual target distand@; — ¢,|| as a binary filter to identify the correct target pair in
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the LIDAR scan. If a valid target pair cannot be identified tperator is alerted to
take corrective action.g., reposition the chair) and the process repeated.

4.2 Pose Estimation

An Extended Kalman Filter (EKF) is used to estimate the chase. The predic-
tion step employs feedback from the on-board encodersgvthé correction step
leverages the target positions recovered from the segtmmtarocess. The pro-
cess model for the EKF is based upon the standard kinematiommodel for
the differential-drive wheelchair, and is not covered heréhe interest of brevity.
Instead, we focus upon the measurement update phase of thevE&re position
estimates of the two retro-reflective targets are used teecbthe pose estimate. A
straight-forward approach to modeling the LIDAR measunaetsi@ould be to derive
the measurement Jacobiflnbased upon the range and bearing measurements. There
are potential shortcomings with such an approach. The gporeding measurement
equations (for bearings in particular) are highly non4in@nd are not well modeled
by a first-order approximation. Ultimately, this could leagoor filter performance.
Instead, with each LIDAR scan we directly estimate the pmsiof the features in
the world frame. This is straightforward from the availablBAR measurements

7 | cos(a + ;) ;
2(tk) = [yl]tk T [sin(ai +91)Lk €2 @

where[z,,, z,,]7 corresponds to the position of th& feature in our world frame
W, [z1,u1, 67 reflect the coordinate transformation from the LIDAR serfsame
L to W, and(r;, o;) denote the range and bearing measurements té'tharget
with respect toL. These feature positions are then are used directly by ttee. fil
This is akin to using GPS measurements in the filter rather tha raw range mea-
surements from which they are formed - a common practice ibilmoobotics. The
corresponding measurement equations for the filter cantt@erritten as

T cosf —sinf a;
hy(t) = [yLk + [sin@ cos Lk [bl] (3

where[a;, b;]7 denotes the fixed position of th&" target in the robot frame,
andé corresponds to thpredictedwheelchair orientation at thig” time-step. The
resulting measurement Jacobian is
10 —a;sinf — b; cosf
Hi(ty) = {01 aiCOSH—bisinb’] (4)

One issue remaining is properly modeling the covarianch@f¢sulting sensor
measurements. Each range and bearing measurement defevesaandinate frame
with basis vectors;; = [cos a;, sin ;] 7, ug = [sin a;, — cos o;]T. The uncertainty
in the u; direction corresponds directly to the variance of the ramgasurement
o2 = o2. Uncertainty in theus direction is a function of the uncertainty of the

U1
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bearing angle measurement Whefg = 72 sin? o,. Noting that for the LMS291,
o, is in fact quite small € 1°), this can be very well approximated by, = 70?2
Since this transformation is linear in termsxf, we expect the characteristics of the
(assumed Gaussian) noise of the bearing measurements tesaevyed.

The last step is to transform the corresponding covariaratexrio V. This can
readily be accomplished through the similarity transform

2
Ri(ty) = Ti(ty) [CBT TiQ(()ji } Ti(te)" (5)

where

(6)

Ty(te) = [cos(ozi +6;) —sin(a; + QZ)L

sin(a; + 6;)  cos(ay; + 6)

and whereR; is the measurement covariance for tHetarget. The correction step
for the EKF can then be written in standard form.

5 Wheelchair Control

From an automation perspective, two aspects to the contoblgm must be con-
sidered:motor control andmotioncontrol. The motion controller generates higher
level velocity commands vanside based upon the current pbaé as estimated via
the localization system presented in Section 4. These arerintransmitted to the
powerchair over a dedicated RF link, which regulates theaMaglocities to achieve
the objective linear and angular velocities for docking.

5.1 Motor Control

The wheelchair employs a differential drive system whee itiotion controller
transmits objective linear and angular velocities, whighia turn mapped to wheel
velocities. These are then regulated via a PID controllgsiémented in software
on the chair's embedded PC. Feedback to the PID is providediigh-resolution
quadrature encoders that measure right and left wheel ffa\g,, Apr) at 100Hz.
To properly model motor controller performance, experitaemere conducted to
characterize the latency between controller input andrchetuation. These tri-
als indicated typical latencies of 500-600ms between motmtroller input and
wheelchair actuation. When considering the nominal livedwcity of the chair was
40 cm/s, and the clearances associated with docking welreearder of 4 cm, such
a delay was significant. This influenced the design of theanatbntroller, as dis-
cussed in the sequel.

5.2 Motion Control

Motion controller design was influenced by real-world coaistts associated with
system use. These included not only the controller latematyalso docking clear-
ances and the constrained ground area adjacent to the esdbichavigation. As
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such, our motion planner employed a hybrid control desigmsisting of two pri-
mary controller modes: course-correction, and path-fdhg. In this paradigm,
gross y-position errors were first corrected (when necggsathe course-correction
phase before proceeding to path-following for docking. w describe each mode in
greater detail.

Path-following Phase

Path-following was the primary controller mode, and the nsed for docking onto
the lift platform. It employs a traditional PD controllerrileed using I/O feedback
linearization techniques

kpy
= —k,tanf — —22— 7
v an vcosf (7)

wherew andv are the desired linear and angular velocities transmitigte chair,

v is assumed piecewise constant, @ndk, are positive controller gains. For safety
considerations, we specify maximum linear and angularos [v,,q., Wimaz]*
for the chair. Typical values were 0.4 m/s and 0.8 rad/s ietpra (significantly less
than what can be achieved by the actual hardware). To accdatenthese limits, we
borrow from [11] and constrain the actual controller inptots

Wact = S(w) argmin{ |w|, Wmaz } » Vact = “2LVman (8)

whereS() corresponds to thsignfunction. These constraints ensure that while the
wheelchair will no longer follow the same trajectory spefby (7), it will follow
the same path while protecting against actuator saturation

One further refinement was made immediately preceding fudithing mode by
an orientation correction. The intent was to find an initiaéntationd* such that the
magnitude ofv, is minimized - and ideally zero. From (7), we obtain two pbksi

solutions: N )
" = { —arcsin | 22¥ , — arcsin WY 9)
kyv kpy

So, for the case whellék,y)/(k,v)| < 1 there is an initial orientation for our path
follower that requires zero initial angular velocity. Ramately, our configuration pa-
rameters allow such an orientation to be readily achievadsTall initial orientation
error can be removed prior to initializing the path-follaveentroller.

Course-Correction Phase

To enhance ATRS docking reliability, a course-correctiaumis also incorporated
to address gross y-position errors. This controller phaseiivated after initial lo-
calization in autonomous moamly if it is determined that the path-following mode
would be at risk for failing to dock the chair at the handoffation provided by the
operator €.g, for large y-position errors with the chair left too near lifteplatform).

In this event, we again exploit the chair’'s two degrees of itglio align the chair



8 C. Gao, |. Hoffman, T. Panzarella, and J. Spletzer
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Fig. 3. Docking trial simulation illustrating controller couremtrection to eliminate gross
y-position errors. At position C, the wheelchair switchespath-following mode for final
docking. In this examplé) e = 75°.

along the x-axis in our world frame. This is accomplisheatiyh the following set
of control inputs.
dOR = —OmasS(yo) — bo , dog = w0l (10)

sin Omaq

whereyy, 6y denote the initial y-position and orientation of the rolrespectively,
andé,, ., corresponds to a maximum allowable orientation angle femtheelchair
that ensures both retro-reflective targets will be visiblthe LIDAR (somewhat less
than90°). The effect of these inputs is illustrated in simulatiorragure 3. The first
reorients the wheelchair from its initial pose (A) to one moormal to the x-axis
(B). After this, the chair translates to approximatgly= 0 (C). At this point, the
controller switches to path-following, where the initialientation correction will
reorient the wheelchair for docking. The net result is a drdenreduction in the
settling distance, which also reduces the impact of latemogontroller robustness.

1

Fig. 4. Controller performance with the PD control law (left), ariation correction integrated
(center), and course-correction added (right). The |&tierinated residual poses associated
with docking failure. Simulation resolution was:in>

6 Simulation Results

Docking performance was first extensively evaluated in ftmn. Our simulation
model echoed the real-world system characteristics to ttenepossible. It inte-
grated the EKF for localization, and included (incomphgtehodeled estimates for
controller latency, process noise in the odometry systemd, measurement noise
for the LIDAR. Monte-Carlo simulations were then run ovee ttange of feasible
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Fig. 5. ATRS demonstration at WCD2006. The operator performs ateesgat transfer (left),
and then remotely controls the wheelchair to the vicinitghaf lift platform (center). At this
point, the LIDAR tracks the chair while sending real-timentrol inputs over a dedicated RF
link. Autonomous operations conclude with the chair susftgly docked (right).

poses to identify potential failure conditions for dockifdnese were also useful in
demonstrating the evolution of the controller strategy.

Figure 4 illustrates the results of a Monte-Carlo simulatised to assess con-
troller performance. Green and red dots reflected whetleecdnresponding initial
position resulted in a successful or failed dock attemgpeetively. For purposes of
this simulation, success corresponded to orientation apasition errors less than
10° and 5 cm, respectively, before the chair reached the ramipeolift platform.
Figure 4 (left) reflects the performance of the path-followemponent from (7)
alone. Controller performance is improved when path-feihg is preceded by an
initial orientation correction (center), while all faiimodes were eliminated with
the integration of the course-correction component (yight

As a testament to the fidelity of the simulation, the gainsdufee the path-
follower controller on the actual vehicle were nearly ideait to those obtained
through the simulation process.

7 Experimental Results and Future Work

Over the past six months, the beta ATRS has been tested acrasge of condi-
tions. This included three days of continuous demonstnatai the World Congress
Exposition on Disabilities (WCD 2006) in November 2006. @yence participants
were also given the opportunity to test the system. Over 3@tes of docking
and undocking were conducted during this time without alsirfgilure. A sam-
ple trial is illustrated at Figure 5. A video of this same lirzmn be viewed at
http : / /vader.cse.lehigh.edu/

While we are optimistic that this framework is sufficientigbust under real-
world conditions, additional work remains. In the shortmi, this includes inte-
grating a gyroscope with the odometry system to detect wélggdage, as well as
actuating the LIDAR pitch to relax our ground-plane assuarpand reduce the fidu-
cial size. In the longer term, we are also investigating divawision system to be
used in conjunction with (or as an alternative to) the LMS291
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