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Abstract In this work, we present a proof-of-concept Automated Asset Locating
System (AALS) for enhancing inventory management. AALS integrates LIDAR
and RFID sensor measurements into a Rao-Blackwellized particle filter for simul-
taneously localizing its pose with the positions of assets in the environment. We
present significant experimental results where the proof-of-concept system success-
fully traveled a total distance of 1.4 km autonomously, while detecting and mapping
all 143 available assets in real-time, and with a mean position error of < 80 cm.

1 INTRODUCTION

Radio Frequency Identification (RFID) systems use radio frequency to identify, lo-
cate and track features of interest. The technology sees widespread use in commer-
cial applications to include baggage handling, passport readers, and toll collection
to name but a few [1]. There are several RFID variants: passive, semi-passive, and
active. In this work, we limit our discussion to the former. A passive RFID system is
composed of three primary components: a reader (RF transmitter/receiver), a passive
tag, and a host computer. The tag is composed of an antenna coil and an integrated
circuit that contains both modulation circuitry and non-volatile memory. The tag is
energized by the RF carrier signal transmitted by the reader. Using this scavenged
energy, the information stored on the tag – to include a unique identifier for that tag
instance – can be transmitted back to the reader [2]. The strength of RFID is that
it explicitly solves the data association problem. As each tag is associated with a
unique identifier, false correspondences across tag detections are eliminated.

In this work, we investigate the potential for applying RFID and robotics tech-
nologies to inventory management tasks. Manual intervention in material tracking
systems is labor intensive, costly, and error-prone [3]. Furthermore, low-frequency
“scheduled scanning” approaches cannot ensure that inventory remains up-to-date.
The ability to automate the material tracking task can dramatically enhance as-
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set visibility. To this end, we demonstrate an Automated Asset Locating System
(AALS) that integrates LIDAR and RFID sensing on a mobile robot base for en-
hanced inventory management. The RFID system’s role is dual purpose. First, the
tags serve to identify assets to be tracked. Second, they are integrated into the envi-
ronment as correspondence-free landmarks. In this role, they effectively introduce
dramatic, artificial asymmetries into the environment. This enables reliable robot
localization indoors even in largely symmetric environments, and where the scale of
the environment was large compared to the range of the robot’s sensors – conditions
which could be problematic for traditional SLAM and localization approaches. The
RFID tag’s extremely compact size (≈10-30 cm2 stickers) and low cost ($0.1-1.0)
allows them to be discretely integrated into the environment. The net result is an
automated system capable of reliably locating assets in the environment.

2 RELATED WORK

Several researchers have investigated the convergence of robotics and RFID tech-
nologies. Most related to our work is that of Hähnel et al [4], where a Pioneer 2
Robot equipped with a Sick LMS200 and an RFID reader was manually steered
through the environment. Using a map generated a priori, the authors employed
Monte-Carlo localization (MCL) to estimate the position of RFID tags in the envi-
ronment. Formal results on tag localization accuracy were not provided. However,
they demonstrated that using these same tags as landmarks, robot localization could
be achieved using only RFID measurements (although not to the same level of ac-
curacy as when the LIDAR system was used). Schneegans et al [5] built on this
to demonstrate a system for robot localization using a more sophisticated sensor
model, and whereby an RFID snapshot was associated with a database of learned
features. They compared their approach with those from [4], and found comparable
accuracy in the end position estimate of the robot, but a significantly faster filter
convergence rate. This work was also done off-line.

There is also significant work that has emphasized using RFID to assist in local-
ization tasks. Kulyukin et al incorporated RFID into a robotic assistant for the visu-
ally impaired [6]. Tsukiyama demonstrated a limited implementation where RFID
tags served as topological landmarks enabling the robot to correctly follow a path
[7]. Mapping the position of assets was not considered. Chae and Han used a topo-
logical approach with RFID and a vision sensor [8]. Experimental results were again
off-line. Miah and Gueaieb examined using tag received power (TRP) to estimate
the distance from the robot to the tag [9]. However, their implementation was lim-
ited to simulations. Milella et al developed an RFID-assisted mobile robot system
for mapping and surveillance using fuzzy inference methods [10]. In terms of as-
set tracking task, Ehrenberg et al investigated the use of a LibBot to locate books
in a library environment [11]. They localized densely packed, short range tags by
again employing a probabilistic RFID antenna model. The actual implementation
was rather limited however, with experiments only over a single library shelf.

Our work differs from these efforts in several ways. First, we employ a Rao-
Blackwellized particle filter for the simultaneous localization of the robot pose and
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mapping of asset positions in the environment. Second and more significantly, un-
like these efforts we provide significant experimental results with AALS operating
on-line. In our experiments, AALS is completely responsible for its own navigation
as it self-localizes and maps the positions of assets in the environment. These results
show that AALS is capable of reliably detecting and mapping the position of assets
in the environment in real-time.

3 THE DEVELOPMENT PLATFORM
The AALS proof-of-concept system was built upon an iRobot Create robotics devel-
opment platform. The Create is an excellent low-cost research platform, combining
a robust mobile chassis with a higher level motor control interface through RS-232
communication, odometry feedback, limited sensing, and 5V DC power output. The
other primary components of AALS are:
Computing With the exception of motor control which ran on the Create’s embed-
ded computer, all computing was done on a Lenovo X200 laptop with a 2.4 GHz
Core 2 Duo processor and 2 GB memory.
LIDAR. The primary exteroceptive sensor for AALS was a Hokuyo URG-04LX
LIDAR. The URG-04LX provides a 240◦ field of view with an angular resolution
of 0.36◦ . It offers an advertised range of up to 5.6 meters, although in this applica-
tion we found a more accurate estimate to be <4.5 meters.
RFID. The RFID transceiver used in this work was a Skyetek M9 operating at 862-
955 MHz. We deliberately chose an UHF module to maximize range. The reader
was multiplexed to a pair of antennae oriented to maximize detection coverage to
the front and sides of the robot. To date, all development has been done using the
Alien Technology ALN-9534 Gen 2 tag. In an evaluation of available Gen 2 tags,
this model provided acceptable detection ranges (up to 4.0 meters) while exhibiting
fairly good omnidirectional performance in a compact footprint. Images of AALS,
showing the integration of on-board computing, the URG-04LX, the M9, multi-
plexer, and antennae are at Figure 1.

Fig. 1: Top and side profiles of AALS showing the integration of Hokuyo URG-04LX LIDAR,
RFID reader, and on-board computing.
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4 ROBOT LOCALIZATION & ASSET TRACKING
For robot localization and asset tracking, we employed a Rao-Blackwellized Particle
Filter (RBPF). Such approaches were first introduced to the robotics community by
Doucet et al [12], who observed that the simultaneous localization and mapping
(SLAM) problem could be factored into two sub-problems

p(x1..t , l1..m|z1..t ,u1..t−1) = p(x1..t |z1..t ,u1..t−1)
m

∏
i=1

p(li|x1..t ,z1..t) (1)

where x1..t denotes the robot pose over time, l1..m the m landmark positions, z the
sensor measurements, and u the control inputs. The left term on the right side of (1)
corresponds to the robot localization problem, and the right term to estimating the
position of m conditionally independent landmarks in the map. This partitioning en-
abled the robot localization problem to be solved using a traditional particle filtering
approach, while allowing the mapping problem to be estimated through analytical
methods. The significance of this factorization was that it mitigated the otherwise
exponential increase of particle samples with increases in state space dimension
(i.e., the number of landmarks). This result was leveraged by Montemerlo et al in
developing FastSLAM [13], where mapping was accomplished by associating m
Extended Kalman Filters (EKFs) with each particle to independently track the m
landmarks l1..m. We employed a similar approach, using Monte-Carlo Localization
(MCL) to estimate the robot pose, and Kalman Filters for asset tracking.

4.1 Sensor Model Development

The LIDAR Sensor Model. AALS relies heavily upon the Hokuyo URG-04LX
for localization. The URG-04LX is extremely compact and lightweight compared
to the ubiquitous Sick LMS2xx series LIDARs, which made it well suited for our
proof-of-concept. However, they are also myopic, demonstrating an effective range
of <4.5 meters in our experiments. Such limited range can be a challenge for
MCL approaches, which solves a data association problem relating the robot pose
[x(t),y(t),θ(t)]T vs. time through asymmetries in the environment. Our develop-
ment site consisted of two building wings connected by a corridor ≈ 40 meters in
length with little asymmetry. To mitigate the potential for the filter converging too
quickly (and likely incorrectly), the conditional density functions which model the
uncertainty in LIDAR measurements (and are used to weight the individual parti-
cles) were dramatically smoothed. As a result, even a relatively improbable mea-
surement was unlikely to penalize a particle dramatically. We found that such a
PDF would ensure that the robot’s pose would eventually converge to the correct
position/orientation even without input from the RFID sensors and regardless of the
initial robot pose.

The RFID Sensor Model. Two different models were used for the RFID sensor de-
pending upon its given role. The primary purpose of landmark tags (with positions
known a priori) was to provide a low-cost mechanism for enhancing localization ro-
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Fig. 2: (Left) Weighting function for landmark tags used in the robot localization process. (Right)
PDF for asset tag detection generated empirically.

bustness, as there was no potential for data association errors. We considered their
ability to assist in pose estimates and improve filter convergence as demonstrated
in [4] of secondary importance. Therefore, we assumed no relative orientation in-
formation was available and a symmetric scaling function S was used to reflect the
likelihood of landmark detection by the robot. To model this, we defined a critical
radius r∗ around each landmark where detection was expected based upon empirical
results. With r∗ so defined, the weight function used was

S(i) =
[
(d(i) < r∗)+(d(i) > r∗)

r∗

d(i)2

]
(2)

where d(i) = ||(x,y)T − (xi,yi)T || was the Euclidean distance from the robot to the
ith landmark. When used in conjunction with the MCL process, particles within the
critical radius of a detected landmark are unaffected, while the weights of those out-
side are scaled inversely proportional to the squared distance to the landmark. This
is illustrated at Figure 2 (left). The motivation for the quadratic model is the Friis
Transmission Equation, which shows that the power ratio between receiving and
transmitting antennae are inversely proportional to their distance squared [14]. The
placement of only several landmark tags in the environment dramatically acceler-
ated particle filter convergence during our experiments.

For asset detection, we assumed that the estimated robot pose was approximately
correct. As such, the sensor model was directional to reflect the relative robot/asset
tag orientation. We initially generated a discrete PDF model empirically by collect-
ing detection data as a function of tag position, orientation, and height as in [5]. The
resulting two-dimensional PDF estimate in the antenna frame is shown at Figure 2
(right). The PDF is highly non-Gaussian, and does not lend itself to a Kalman filter
implementation. However, in reality this model – as well as those typically used
in related work – is ad-hoc. Antenna performance is strongly environment specific.
Signal is strongly tied to reflections from the floor, walls, ceiling, obstacles, signal
absorption, the amount of metal in the environment, tag line-of-sight, the object to
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which the tag is affixed, etc.. In fact, in preliminary testing we compared a voting
approach based upon our discrete PDF model with a pure Kalman filter using an
overly conservative approximation of this PDF. The latter demonstrated equal or
better performance, and as such we ultimately employed such an approach.

4.2 Robot Localization & Asset Position Estimation

For the most part, robot localization was accomplished using a traditional MCL
approach [15]. The time update phase corresponded to the transformation of the
particles’ poses using a unicycle model for robot motion. Measurement updates
using the LIDAR were also straightforward. However, an additional measurement
update stage was integrated for whenever a landmark tag was detected. In this event,
samples were re-weighted based upon wk+1(i) = S( j)wk(i) where wk(i) denotes the
current weight of the ith particle at time-step k, and S( j) the scaling function defined
by (2). After re-weighting, the particle set was re-sampled. The net effect was that
particles far away from landmark j were quickly killed off.

With the ability to reliably localize the robot, we turn to the case of map-
ping assets. To this end, each particle pi, i = 1 . . .n , in our RBPF maintains a
Kalman filter that propagates an estimate for the position and positional covariance
{x(i, j), Σ(i, j)}, j = 1 . . .m, for each of the m assets detected. Note that RFID asset
detections are not used to refine the robot pose estimate, so the asset position esti-
mates remain uncorrelated. As a result, only n of the mn total Kalman filters need
be updated for a given asset detection.

We model each RFID asset detection as a direct estimate of the asset’s position,
i.e., z = W TAxA where xA is the tag position estimate in the antenna frame, and W TA
maps points from the antenna frame to world frame. The associated measurement
covariance is then ΣR = R(θR +θA)ΣAR(θR +θA)T where ΣA denotes the estimated
uncertainty in the antenna frame, and R is a 2-D rotation matrix associated with the
robot θR and antenna θA orientations in the world and robot frames, respectively. The
measurement update is then textbook Kalman Filter, and since the asset position is
assumed static there is no process update.

5 EXPERIMENTAL RESULTS

5.1 Component Level Testing

As part of the proof-of-concept, we performed component level testing to determine
the robustness of tag detection as a function of tag density. Of concern was the po-
tential for message collisions if multiple irradiated tags attempted to transmit at the
same time. To this end, we examined both linear arrays of 5-15 tags, and grid arrays
of 12 tags (3×4) with inter-tag spacings ranging from 0-45 cm. This also included
different heights above the ground plane. A representative linear array configura-
tion with 10 cm spacing is shown at Figure 3 (left). For each test geometry, AALS
was driven multiple times past the tag array at standoff distances consistent with an
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expected detection based upon the sensor model derived in Section 4.1. A tag was
considered detected if it was successfully identified at least one time while AALS
traversed the array. Summary statistics are shown at Figure 3 (center).

Fig. 3: (Left-Center) Sample RFID linear array used during component level testing. All configu-
rations demonstrated at least a 93% success rate. (Right) Sample asset configuration during system
level testing.

There were 908 true positives, 17 false negatives, and 0 false positives. Sixteen of
the 17 false negatives were with grid arrays with inter-tag spacing of 5 cm (14) and
15 cm (2). These corresponded to tag densities of 100 and 30 tags/m2, and detection
rates were 93% and 96%, respectively. These results indicate that the anti-collision
protocols employed by the system worked very well for the range of geometries
tested even under very high tag densities.

5.2 System Level Testing

To demonstrate the system level proof-of-concept, we conducted a series of exper-
iments using the fourth floor of Packard Laboratory at Lehigh University as the
development site. This constituted a region ≈ 48× 14 meters. Our map M repre-
sentation was an occupancy grid with a cell resolution of 10 cm, and was provided
to AALS a priori. The map was constructed from digital blue prints. While nomi-
nally correct, there were significant inconsistencies between this map and the actual
floorplan. Only the most serious of these were corrected. One final alteration to M
included the introduction of 4 landmark tags with positions also known a priori by
the robot. These were spaced approximately every 15 meters in our corridor set.
Finally, 10-15 assets (i.e., card board boxes and plastic bins with tags affixed) were
placed in random locations throughout the environment. A representative configu-
ration is at Figure 3 (right).

For global path planning, AALS was provided a route network graph G(V,E)
that delineated in continuous space the intended paths for navigation. Waypoints in
the route network corresponded to vertices vi ∈V of G, and the edge set E⊂G corre-
sponded to path segments where each ei j ∈ E connected a pair of waypoints (vi,v j).
The desired path for a given mission was then specified via a waypoint sequence
(vi,v j, . . . ,vn). For motion planning, AALS relied upon 2 modes: obstacle avoid-
ance, and path following. Prior to particle filter convergence or in the event that the
specified route segment was blocked, AALS would operate in obstacle avoidance
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mode. For path-following, a PD controller was used where the normal distance to
the current route segment was employed as an error metric. The typical mission for
AALS entailed a complete circuit of the test area. This corresponded to a mission
length of ≈ 125 meters.

Fig. 4: Mission results showing the actual (blue “*”) and estimated (red “numbers”) asset locations.
The mean position error in this trial was 54 cm.

After preliminary testing to characterize the system, a total of 12 missions were
conducted. During these trials, the starting point was varied, as were the position
and orientation of assets. This ensured that asset detection and mapping was pos-
sible with tag orientations parallel and orthogonal to the robot path. The geometry
changes were also done to ensure that the sensor model for the Kalman filter was not
deliberately biased. For each mission, AALS drove at a nominal linear velocity of
0.3 m/s. At the initiation of each trial, 10,000 particles were used to instantiate the
prior for the robot pose. This number was reduced dynamically to as few as several
hundred particles using the second-order statistics to infer convergence of the parti-
cle set. To further support real-time computation, LIDAR range measurements were
sub-sampled to an angular resolution of 1.08◦ . The target update rate for AALS was
2 Hz. At the conclusion of a given mission, the estimate for the position of assets
was determined from [

x
y

]
i
=

n

∑
j=1

w( j)
[

x
y

]
i j

, i = 1 . . .m (3)

where [x,y]Ti denotes the position of the ith landmark, [x,y]Ti j the ith landmark posi-
tion as estimated by the Kalman filter of the jth particle, and w j is the corresponding
sample weight at mission completion. Results from a representative mission are at
Figure 4. This shows the route network (green lines), the path as estimated by the
robot (red dashed lines), the position of landmark tags (yellow circles), and the ac-
tual (blue “*”) and estimated (red “numbers”) positions of assets.

Of the 12 missions, 11 were completed successfully. The one failure occurred
when an asset was deliberately placed across the path. The motion planner incor-
rectly determined the path was not traversable, and aborted the mission. The motion
planner was subsequently modified, and this same configuration was successfully
re-tested. The 11 completed missions constitute a total distance traveled of 1.4 km.



Automated Asset Locating System (AALS) 9

During this time, all 143 assets that were placed in the environment were detected.
The estimated asset positions were then compared with hand-measured ground-truth
values. Statistics for the different configurations are shown at Table 1. Border and
interior configurations discriminate as to whether the asset was located on the map
border or in the interior. Parallel/normal to path refers to the antenna orientation
with respect to the robot’s primary direction of travel.

Asset Configuration Number Samples Number Detected MPE (cm) σ (cm)
All 143 143 79.2 49.5

Border 130 130 79.4 49.8
Interior 13 13 77.1 48.3

Parallel to path 91 91 86.8 55.5
Normal to path 52 52 65.8 33.3

Table 1: Mean Position Error (MPE) for detected assets as a function of geometry.

From these, we see that the average position error was <80 cm. There was little
difference between assets that were located within the interior or along the border of
the map (we should note that no optimizations were done to asset location estimates
that were outside the boundary of the map, which would have improved results). We
do note a fairly significant difference between tag orientations that were normal vs.
parallel to the robot’s direction of travel. This appears to be attributed to the normal
antennae being detected at longer standoff distances, and the associated Kalman
filters seeing a larger number of measurement updates. However, further analysis is
needed to support this hypothesis. We should note that in a warehouse or similar
environment where such a system would be used, tag orientation would typically be
parallel to the direction of travel and as such these errors are more representative.

For portions of three trials, we also estimated robot position using a Sick
LMS291-S14 to track a retro-reflector affixed to the robot. Using this as ground
truth, the mean absolute position error of the robot localization system was 53.3 cm
(σx = 49.3 cm, σy=19.1 cm). The bias was not surprising due to the strong symmetry
and limited configuration space in the x and y directions, respectively. Taking these
findings into consideration, a more accurate estimate of tag localization performance
would be a MAE of ≈60 cm.

6 DISCUSSION

In this work, we demonstrated a proof-of-concept Automated Asset Locating Sys-
tem (AALS) that integrates LIDAR and RFID sensing on a mobile robot base. The
RFID system’s role was dual purpose in this application – identifying both asset
and landmarks tags in close proximity to the robot platform. These measurements
enabled the position of asset tags in the environment to be estimated with a mean
error of <80 cm. Furthermore, they were able to augment the limited range of the
Hokuyo URG-04LX by not only accelerating the filter’s convergence rate, but also
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ensuring against divergence in areas of low feature asymmetry. A natural question
regarding this approach is the use of MCL vs. SLAM. This decision was made so
that landmark tags with known “absolute” positions in the map could readily be in-
tegrated to protect against localization failures (e.g., incorrect loop closures). We are
currently investigating a hybrid approach which integrates both aspects, and work-
ing with members of the NSF Center for Engineering Logistics and Distribution to
evaluate AALS in a larger scale, representative environment.
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