
Reinforcement Learning for
Autonomous Dynamic Soaring in Shear Winds

Corey Montella and John R. Spletzer

Abstract— Dynamic soaring (DS) is an aerobatic maneuver
whereby a gliding aircraft harnesses energy from horizontal
wind that varies in strength and/or direction to support
flight. Typical approaches to dynamic soaring in autonomous
unmanned aerial vehicles (UAVs) use nonlinear optimizers to
generate energy-gaining trajectories, which are then followed
using traditional controllers. The effectiveness of such a strat-
egy is limited by both the local optimality of the generated
trajectory, as well as controller tracking errors. In this paper,
we investigate a reinforcement learning (RL) approach working
in continuous space to control a DS aircraft flying in shear wind
conditions. The RL controller operates in two stages: In the first
stage, it observes a traditional sample-based controller flying a
locally optimal DS trajectory generated a priori. In the second
stage, the sample-based controller is removed and authority is
passed to the RL algorithm. We show that by deviating from
the original planned trajectory, the RL controller is able to
achieve better performance than its baseline teacher controller.

I. INTRODUCTION AND MOTIVATION

Dynamic soaring (DS) is an aerobatic maneuver routinely
performed by seabirds like the albatross to extract energy
from horizontal winds that vary in strength or direction. Re-
cent attention has been paid to DS for autonomous unmanned
aerial vehicles (UAVs) due to the potential to drastically
extend mission duration. For instance, a gliding aircraft in
the jet steam could act as a low orbit communication relay by
performing a continual cycle of dynamic soaring maneuvers,
which could potentially support flight indefinitely [1].

While no autonomous DS flights have been recorded,
several authors have proposed feasible solutions to demon-
strate the maneuver. These generally involve locally optimal
trajectories generated offline by a nonlinear optimizer [2],
and a controller capable of tracking them. Flanzer proposes a
robust trajectory optimization approach which aims to ensure
safety while maintaining an energy neutral trajectory [3]. He
further proposes a cyclical controller which uses information
gained on each DS cycle to correct errors in the next cycle.
Lawrance and Sukkarieh employ a sample-based controller
to track global targets selected from a wind field map [4].

In this paper we are interested in the problem of dynamic
soaring in shear winds. Shear layers are the result of ground
features, such as ridges, which block prevailing winds and
create a gradient in which DS maneuvers can be performed.
Above the ridge, wind blows at a constant speed, while

This material is based upon work supported by the National Science
Foundation under Grant No. 1065202.

The authors are with the VADER Laboraty in the Computer
Science and Engineering Department of Lehigh University,
Bethlehem, Pennsylvania, United States cmontella@ieee.org,
spletzer@cse.lehigh.edu

below the ridge the air is still. Thus a wind gradient exists
in this region which we parameterize by a maximum wind
strength wmax, and a height ∆h. Since shear layers are
local phenomena, we are interested in exploring loiter-type
trajectories, where the soaring aircraft returns to its starting
position and orientation after it executes a DS maneuver,
ready for a second cycle. The aircraft can be thought to
orbit a fixed point, which we use as a zero reference for the
coordinate system in this work. Figure 1 depicts an example
loiter trajectory in a shear wind field.

The aforementioned trajectory following techniques rely
on the idea that a generated trajectory is at least locally
optimal, so following one should net the aircraft a near
optimal energy gain. However, wind gusts, tracking errors, or
inaccurate sensor measurements can often cause the aircraft
to deviate from the planned path. For an energy-maximizing
aircraft in these situations, returning to the planned trajectory
can potentially cost more energy than allowing for some
deviation to accommodate the perturbed state.

Reinforcement learning (RL) is a machine learning
paradigm which aims to learn a controller based on observed
actions. Wharington specifically approaches several soaring
problems, including thermal soaring, essing, and dolphin
soaring using RL controllers [5]. However, he stops short of
RL for dynamic soaring, noting that the problem is probably
intractable for hardware circa 1998. The aim of this paper
is to revisit this possibility, and develop an RL controller
that will learn from a conventional teaching controller, and
eventually evolve to outperform it. Similar approaches have
been employed to learn aerobatic helicopter control [6]. More

−30

−20

−10

0

10

20

30

−30
−20

−10
0

10
20

90

95

100

105

110

115

x (m)

y (m)

z
 (

m
)

Fig. 1: An example dynamic soaring trajectory, depicting several states of
the UAV along the path. The scale of the glider is magnified 3x for clarity.
In this case, winds prevail from the -y direction at wmax = 9m/s, with
the shear region between 100 m and 110 m in altitude.

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 3423

specifically related to this work, Barate et. al. use motion
primitives to define a rough DS controller, which is refined
by a genetic algorithm [7].

The rest of this paper is organized as follows: Section II
contains a brief introduction to the RL framework and the
techniques we will use in this paper. Section III details our
RL implementation, and Section IV describes the process
used to bootstrap our RL algorithm with a conventional
tracking controller. Simulation results that compare the RL
controller to the teaching controller for two simulation envi-
ronments are presented in Section V. We conclude and posit
future directions in Section VI.

II. REINFORCEMENT LEARNING

Reinforcement learning is a problem formulation which
aims to maximize the performance of an agent by observing
its actions and assigning rewards based on their outcomes.
The goal of the agent is then to maximize the cumulative
sum of its rewards over a specified time horizon.

The essential RL model consists of a set of environment
states, st ∈ S; a set of actions, at ∈ A, that an agent
can perform at each state; and a set of scalar reinforcement
signals, rt, achievable by the agent. The purpose of RL is
to find a mapping from states to actions, called a policy π,
which maximizes the cumulative reward of the agent over
time, expressed as

R =

∞∑
t=0

γtrt (1)

where 0 < γ < 1, known as the discount factor, reduces
the value of future rewards. Equation 1 is known as the
discounted infinite horizon reward, and is appropriate for an
agent that will act for an undetermined number of actions.
This is well suited for a DS task, and is the reward function
we will use in this paper.

While there are many approaches to solving RL prob-
lems, in this work we will use the Q-Learning algorithm.
Introduced by Watkins in 1989, Q-Learning is one of the
most popular RL algorithms due to its simplicity and proven
convergence properties [8]. Q-Learning is a dynamic pro-
gramming algorithm that encodes the optimal policy π∗ in
a so-called Q-function. This is typically implemented as a
matrix, where each row corresponds to a state, each column
corresponds to an action, and each element holds the dis-
counted reward associated with the state/action pairing. The
Q-function is initialized arbitrarily and is updated according
to the following iterative rule

Qt+1(st, at)←Qt(st, at) + (2)
α(rt+1+γmax

a
Q(st+1, a)−Qt(st, at))

where st are states, at are actions, rt+1 is a reward, and the
parameter 0 < α < 1 is known as the learning rate.

As shown by Watkins, as long as every state is vis-
ited continually, the algorithm converges to the optimal Q-
function irrespective of how actions are chosen. The algo-
rithm is therefore termed ”off-policy”, meaning the learned

Q-function is independent of the policy followed during the
learning process. We will exploit this feature of Q-Learning
in this work.

This overview has covered only the elements of RL
essential to this work. For a comprehensive introduction
to reinforcement learning, see [9]. A recent survey of the
application of RL to robotics problems can be found in [10].

III. REINFORCEMENT LEARNING IMPLEMENTATION

As an inherently high dimensional, continuous state space
problem, DS is not a drop-in candidate for most RL algo-
rithms, including Q-Learning. In this section, we discuss
the implementation details of the reinforcement learning
approach used for our DS task, which were inspired by [11].
First we discuss our state space formulation. Then, we detail
how we used a function approximator to adapt Q-Learning
for a continuous state space. Finally, we detail next state
selection and our reward function.

A. State/Action Space

An intuitive space to use for the learner is the position
and attitude of the aircraft

st = [vt, xt, yt, zt, ψt, γt, µt] (3)
at = [γt+1, µt+1] (4)

where vt is the airspeed; xt, yt and zt are Cartesian coordi-
nates relative to the loiter point; and ψt, γt, and µt are the
yaw, pitch and roll angles. The action space consists of the
commanded pitch and roll angles for the next state. However,
this means the Q-function will have 9 dimensions, which
is undesirable. Using a conventional controller (described in
Section IV-B) we collected the states and actions for an entire
trajectory to try and reduce the dimensionality of the state
space through statistical analysis.

The most obvious dimensions to eliminate from the state
space are γt and µt; since our time step is small (0.1 s)
these dimensions are highly correlated to the action space
dimensions γt+1 and µt+1 (ρ > 0.99 for each). We can
further reduce the dimensionality by performing a principal
component analysis (PCA) on the remaining state space di-
mensions. We find that the first principal component accounts
for 93% of the variability in the data, and is aligned along the
ψt axis (with a coefficient value of 0.98). Next in order are
xt (5.5%), yt (0.9%), vt (0.2%), and lastly ht (0.1%). Thus
by removing vt and ht we maintain 99.7% of the variability
in the state space, for a final reduced-dimension state/action
space:

x = [st, at]
> = [xt, yt, ψt, γt+1, µt+1]> (5)

B. Generalized Regression Function Approximation

As mentioned in Section II, the Q-function is typically
implemented as a matrix. In continuous spaces this is not
feasible, so function approximation techniques such as neural
networks are typically used to represent the Q-function
[12]. Unfortunately, the immense training time needed to
create neural networks means the Q-function can only be
learned offline, after a robot has collected a large amount

3424

of experience. Further, since many neural networks cannot
adapt to new data, the robot might not be able to learn
incrementally.

We use an approach with minimal training time that can
be incrementally updated, with the trade-off of requiring a
larger memory footprint. Our approach is inspired by gener-
alized regression neural networks [13], which calculate the
distances from an input vector to a set of training vectors to
arrive at a value approximation. We implement our function
approximator as follows: Consider a query point xq , which
is a state/action vector. We want to determine its Q-value
based on a set of N state/action training vectors, X , and
their associated Q-values Y . We first calculate the Euclidean
distance d from xq to each training vector x ∈ X . Then
the K nearest neighbors are selected, and their distances are
weighted using a radial basis function (RBF) of the form

wk = e−(dk/h)
2

∀k ∈ K (6)

where the parameter h is the RBF bandwidth. The selection
of this parameter is the only training time needed in the algo-
rithm, and is performed using a leave-one-out optimization
technique.

We then multiply these weights by the Q-values corre-
sponding to the K selected vectors and calculate the predicted
Q-value

qp =

∑K
k Ykwk∑K
k wk

×max
k

wk (7)

We multiply by the maximum weight to ensure that poorly
supported vectors have a diminished Q-value. Without this, it
is possible to extrapolate a qp that is not properly justified by
observed data. We further reduce this possibility by choosing
a threshold τ , such that if an observation’s maximum weight
is less than τ , qp is set to zero. In our experiments, we chose
τ = 0.6.

The most significant drawback of this technique is that
every training observation needs to be stored, and X needs
to be searched and sorted for minimum distances. Thus, as
the aircraft gains experience, finding the K nearest neighbors
becomes the bottleneck of the algorithm. To reduce this
problem, we store X in a k-d tree [14] for fast search-
ing. Adding to a k-d tree iteratively can negate its fast
lookup properties, and re-balancing on each iteration is
computationally prohibitive for large data sets. Therefore,
new observations are added to a temporary vector which is
searched in parallel with the tree. When the temporary vector
reaches a threshold size, it is combined with the k-d tree data
set, and the tree is rebalanced incorporating the new training
observations.

Because X grows unbounded, searching still eventually
becomes a bottleneck, even with a k-d tree. Therefore, we
remove redundant points (i.e. closely clustered points have
the same predictive power as a single point) using a leave-
one-out optimization technique that aims to minimize the
predictive impact of the removed observation. Again, since
this is an expensive procedure it is not performed every
iteration, but only when X grows to a set capacity.

C. Selecting the Next Best Q-Value

The maximization involved in Equation 2 is straight for-
ward in the matrix case. For the continuous case, finding the
next best action typically involves an optimization procedure
that can be time-intensive. We solve the problem by sampling
around the current µ and γ, since again we note that the time
step between states is small, and thus our next action (the
roll and pitch command) will closely resemble the UAV’s
current attitude. We sample 20 values each from the ±5
degree regions surrounding the current µ and γ. We take
the combination of these samples and the current µ and
γ for a total of 441 action pairs. These actions are then
concatenated with a vector of the current state, and fed into
the function approximator described in the previous section.
We then simply take the maximum of the resulting predicted
Q-values for use in the Q-function update.

We note here that during the learning phase described in
Section IV, the aircraft is off-policy, i.e. it does not follow the
Q-maximizing µ and γ commands. When the RL controller
is granted authority over the aircraft, the algorithm is then
on-policy, and follows these commands.

D. Rewards

There are several options suitable for rewards in a DS task,
such as path error or energy gain per time step. For loitering
trajectories, the simplest reward function is sparse, meaning
that the UAV earns zero reward at every state except the one
where it completes a loop. An obvious choice for the loop
completion reward suitable for our work is the energy gain
over the completed cycle

rtf =
1

2
m(v2f − v2i) +mg(hf − hi) (8)

where vf and vi are the final and initial airspeeds of the
UAV, hf and hi are the final and initial altitudes, m is the
UAV mass, and g is the acceleration due to gravity.

Due to the sparse nature of this reward function, we
increase the rate of learning by recording the states and
actions of the aircraft over the trajectory. When a reward
is granted at the end of the cycle, we replay these states
in reverse order and update the Q-value with Equation 2
until the reward propagates to the start of the trajectory, as
suggested by [15].

IV. THE LEARNING PROCESS

Q-Learning typically operates in a series of episodes,
where the learning agent performs actions until a goal state is
reached, it is manually reset, or it fails (e.g. the glider stalls).
When the algorithm starts, the agent has no knowledge of
the Q-function, so it must act at random. If it is not guided
by a continuous reward function, a significant amount of
time can be devoted to finding the first reward. For our
DS problem, finding a reward accidentally through a series
of random actions is highly improbable, not to mention
unsafe for a system as unstable as an aircraft. Therefore,
we must direct the agent to interesting regions of the state
space through some other means. We do this through a two

3425

stage learning process. First, the RL controller observes a
teaching controller as it demonstrates several correct DS
trajectories. During this process, the RL controller has no
authority over the aircraft, so it passively constructs a Q-
function corresponding to the teaching controller’s states and
actions. In the second stage, authority over the aircraft is
granted to the RL controller. Now, the RL controller engages
the Q-function it built while while observing the teaching
controller.

In this section we detail the necessary components needed
to enable this learning process, including how DS trajectories
are generated and how they are followed by the teaching
controller. Before we do, we note that through this process
we are not merely encoding the decisions of the teaching
controller within the RL controller. As will become clear in
the experimental results, the RL controller is simply gaining
experience, which it will use to fly a better trajectory than
any demonstrated by the teaching controller.

A. Trajectory Generation

In [16] we presented a method for finding a locally optimal
trajectory in a fixed, known wind field. Each trajectory Π
consists of a series N collocation points, each of which are
associated with a state and action of the UAV at time t of
the flight

Π = [s1, a1, ...sN , aN]> (9)

In our experiments, we use N = 64 collocation points.
We use a nonlinear optimization technique which aims to
maximize the energy gained over the cycle under constraints
which ensure the path observes periodicity of the trajectory
and boundary values on all state variables. We relate collo-
cation points using nonlinear constraints formed from point
mass glider kinematics. This is the same model used for
simulation in Sections IV-B and V-B.

Previously we assumed a wind gradient constant in al-
titude. Now, we relax this condition and assume a more
complex sigmoid wind field, which is more representative
of a shear type wind

Wx =
wmax

1 + eb(a−z)
(10)

dWx

dz
=
b wmax e

b(a+z)

(ea+b + ebz)2
(11)

where wmax is the maximum wind speed at the top of the
shear layer, a is the center altitude of the shear layer, b is a
parameter that controls the steepness of the shear gradient,
and z is the aircraft’s current altitude.

The trajectories are parameterized by a maximum shear
wind strength wmax, the shear region height ∆h, and an
initial aircraft velocity v0.

B. Teaching Controller

A teaching controller based on trajectory rollout [17]
was used to demonstrate correct DS trajectories to the RL
algorithm. This is a sample-based approach on the input
space of pitch and bank rates (γ̇, µ̇). A hypothetical sample

Fig. 2: Diagram of the sample-based controller with a 2 second planning
horizon. The blue line indicates the DS trajectory. The green highlighted line
is the lowest score planned aircraft trajectory. The black circle ahead of the
glider demonstrates the latency planning feature (see Section V-C). While
the controller works in 3D, this diagram is 2D for illustration purposes.

trajectory T = {x0, γ1, µ1, ..., γM , µM} was specified by
the current aircraft state s0, and M pitch and bank angles
determined by fixing the sampled pitch and bank rates over
the M -step control horizon

The angular velocities were then integrated forward
in time yielding a projected path over the chosen con-
trol horizon, updating the hypothetical trajectory to T =
{s0, s1, γ1, µ1, ..., sM , γM , µM}. An advantage of sampling
the control rates is that we ensure each trajectory is feasible
in terms of the aircraft kinematics and constraints placed on
the roll and bank angles. Trajectories that violate our roll
and pitch limits were discarded.

Each trajectory Ti was then assigned a score, equal to
the distance from the pose of the aircraft at the end of the
trajectory to the closest line segment in Π. This is not the
distance to the closest collocation point in Π, but is the
normal projection to the line segment connecting the two
closest collocation points in Π.

The optimal trajectory T ∗ = arg min(D(T,Π)) was then
selected, and the associated pitch and bank angles (γ∗1 , µ

∗
1) ∈

T ∗ were issued as commands to the aircraft autopilot. The
whole process is repeated again at the next time step. A
diagram of this controller is depicted in Figure 2.

The equations of motion used to integrate the aircraft state
forward are derived in [16], and are not repeated here in the
interest of brevity.

V. SIMULATED EXPERIMENTS

In this section we present simulation results for the ridge-
based soaring task outlined in Section I. For these exper-
iments, we assumed a fixed, known wind field. First, we
describe the simulated aircraft model, which is based on
our low altitude DS development airframe. Next we present
simulation results of our point mass model, which are used
to establish baseline performance of the teaching and RL
controllers. Finally we present simulation results from a
high-fidelity 6 DoF aircraft simulator that interfaces with our
autopilot hardware.

A. Development Platform
Our ultimate goal is to demonstrate DS on an actual

aircraft. To this end, the aircraft model used for trajectory

3426

generation and all simulation experiments is based upon our
development platform for low-altitude soaring. The airframe
is a heavily modified EScale Fox commercial off-the-shelf
radio-controlled sailplane. While not the most aerobatic
glider from a DS perspective, it features a large fuselage
necessary for housing the Cloud Clap Piccolo autopilot, the
PC/104+ on-board flight computer, as well as batteries for
powering the avionics and aircraft motor. The Fox has a 2.8m
wingspan and a loaded mass of 4.06kg.

B. Point Mass Model Simulations

Our first set of experiments employed a simulator based on
the same point mass model used to generate DS trajectories.
While this model takes into account basic aerodynamic
forces, it does not not simulate more complex dynamics.
Regardless, it offers three key benefits that are not available
in our alternative simulation environment: First it can be
configured to run in faster-than-real-time, which accelerates
the learning process. Second, the aircraft can be initialized
to any state, which allows us to demonstrate arbitrary ex-
periences to the RL controller. Finally, it provides us with
baseline performance for the teaching controller, since the
sample-based controller model is identical to the simulation
environment model.

For this test we generated a DS trajectory with maximum
shear strength wmax = 9 m/s, shear region height ∆h = 10
m, and initial UAV airspeed v0 = 16 m/s. For the teaching
phase, we chose the initial location of the UAV as the first
collocation point on the DS trajectory. We then demonstrated
a series of 10 flights to the RL algorithm using the teaching
controller. Since the teaching controller is deterministic, at
the start of each episode we corrupted the UAV’s starting
position, attitude, and airspeed with random Gaussian noise
to ensure a variety of trajectories. The mean energy gain for
these 10 flights was 352.62 J, with a maximum energy gain
of 359.39 J; while the mean RMS path error was 0.93 m.
A controller which perfectly tracks this particular trajectory
should gain 364.96 J of energy. Thus, the difference between
this value and the mean energy gain is the result of controller
tracking error.

When these 10 flights concluded, authority was then
granted to the RL controller. Figure 3 depicts the energy
gain of the RL controller as it learned new trajectories.
Learning ceased when energy gain between episodes was
below a target threshold. In this case, it happened also to
be 10 episodes. An interesting feature of this result is the
decrease in performance seen on the RL controller’s initial
flight. This phenomena mirrors that reported by [18].

Once learning ended, we fixed the Q-function and ran 10
more episodes with the RL controller, each with starting con-

Teaching RL Percent Gain
Mean Energy Gain (J) 352.62 389.96 11%
Maximum Energy Gain (J) 359.39 398.98 11%
Mean RMS Path Error (m) 0.93 4.64 -76%

TABLE I: Results for the point mass model simulation after learning
converged. Means are computed for 10 episodes for each controller.

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
y

cl
e

E
n

er
g

y
 G

a
in

 (
J

)

Cycle Number

Learning SB Control RL Control

Fig. 3: Training results for the RL algorithm. On its first attempt the
RL controller performs significantly worse than the teaching controller.
However, performance quickly surpasses the teaching controller after only
a few iterations.

ditions corresponding to the first 10 flights on the teaching
controller. We saw a mean cycle energy gain of 389.96 J
with a maximum of 398.98 J; while the mean RMS path
error was 4.63 m. The foregoing statistics are summarized
in Table I.

From these results we can see that by teaching the RL
controller example trajectories, we were not simply encoding
the actions of the teaching controller for the RL algorithm
to replay. Instead, the RL controller used that experience to
find distinct trajectories that were more efficient than any of
the demonstrated trajectories.

C. High Fidelity Simulations

Cloud Cap provides a high fidelity 6 DoF simulator for use
with their Piccolo autopilots. This features a ”hardware-in-
the-loop” (HiL) configuration wherein the simulator connects
directly to the avionics via an external CAN interface,
and sends simulated sensor data. The loop is closed when
the simulator reads actuator positions, applies them to the
dynamics model, and calculates new sensor data for the
avionics.

The Cloud Cap simulator features models for aerodynam-
ics, sensors, actuators, and inertia. The aerodynamics are
derived from AVL, which we used to model the control
surfaces and lift surfaces of our Fox glider. New states are
then estimated by taking the current state, the information
from the dynamics model, and the position of all control
surfaces.

Before we present results, we note one modification made
to the teaching controller for HiL simulation experiments.
Due to latency in the autopilot, commands are executed
approximately 600 ms after they are sent to the avionics.
Therefore, we project the current state forward 6 time steps
(our controller runs at 10 Hz) using the point mass model.
Thus, when the aircraft eventually reaches the projected state,
it will execute the command planned for that state.

Figure 4 depicts two HiL soaring trajectories and the
same DS trajectory used in the previous simulations. The
green trajectory employed the teaching controller, which
experienced an energy gain of 238.09 J, a percent decrease of

3427

Fig. 4: Soaring results for the HiL simulation. The target DS trajectory is
depicted in blue, with the RL controller path in red, and the sample-based
controller path in green. The RL Controller does not track the blue trajectory,
but creates similar path from learned experience.

32.48% compared to the mean energy gain in the point mass
simulator. There are three primary reasons for this: First,
latency in responding to commands, which we already noted.
Second, the integrated states are based on an incomplete
model. Finally, the planning horizon was increased from 1 s
to 2 s. Using the 1 s horizon, the controller exhibits overshoot
and never converges to the trajectory. Increasing the horizon
to 2 s eliminates this behavior, but also serves to ”round out”
the UAV path, making it more ellipsoidal instead of kidney
bean shaped.

The red trajectory was followed by the RL controller, and
experienced an energy gain of 354.34 J, a percent decrease
of 9.13% compared to the point mass simulator. Compared
to the HiL sample-based controller, the RL controller was
able to extract 49% more energy. The UAV did not start
on the planned trajectory, but instead of tracking to it and
losing energy, the UAV used its learned Q-function to find
another path which closely resembles the planned one. An
interesting result here is the RL controller was not re-trained
in the high fidelity simulator model; the Q-function learned
from the point mass model seems to have generalized well
to the higher fidelity model, but more tests are needed to
verify this.

VI. CONCLUSIONS

This paper presented a reinforcement learning controller
for a dynamic soaring application. We demonstrated that the
RL controller not only outperforms our conventional tracking
planner, but by transferring a learned Q-function between
simulation environments, we showed it is also robust to
shortcomings in the model. This feature of the controller will
be beneficial when transferring from the HiL environment to
a true flying aircraft.

The results shown herein are promising, but require a great
deal of work before RL can be employed on an actual UAV.
First, in this paper we assumed a fixed, known wind field. In
reality, the wind field is neither fixed nor precisely known.
Modifying the RL controller to accommodate uncertain and
changing wind conditions is paramount for a working sys-
tem.

Second, we have not addressed the issue of exploration
vs. exploitation, which is a central tenant of RL. Here, the

RL controller purely exploits the Q-function, and any new
states are found by inferring favorable Q-values from the
function approximator. For a proper RL controller, we need
to specify how to handle exploration, which could possibly
lead to faster convergence or better steady-state performance.

Finally, when exploration capabilities are added, it is
important to prevent the aircraft from entering states which
may yield dangerous control strategies. This safety concern
must be addressed before field testing on our development
platform.

ACKNOWLEDGMENTS

The authors would like to thank Professor Héctor Muñoz-
Avila for his direction and guidence on reinforcement learn-
ing.

REFERENCES

[1] J. Grenestedt and J. R. Spletzer, “Optimal energy extraction during dy-
namic jet stream soaring,” in Proc. of the AIAA Guidance, Navigation
and Control Conf., Toronto, Canada, August 2010.

[2] Y. Zhao, “Optimal patterns of glider dynamic soaring,” Optimal
Control Applications and Methods, vol. 25, no. 2, pp. 67 – 89, 2004.

[3] T. Flanzer, “Robst trajectory optimization and control of a dynamic
soaring umanned aerial vehicle,” Ph.D. dissertation, Dept. of Aero-
nautics and Astronautics, Stanford University, 2012.

[4] N. Lawrance and Sukkarieh, “Path planning for autonomous soaring
flight in dynamic wind fields,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Shanghai, China, May 2011.

[5] J. Wharington, “Autonomous control of soaring aircraft by rein-
forcement learning,” Ph.D. dissertation, Royal Melbourne Institute of
Technology, 1998.

[6] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application
of reinforcement learning to aerobatic helicopter flight,” in Proc. of
the Neural Information Processing Systems Conf., Vancouver, Canada,
December 2006.

[7] R. Barate, S. Doncieux, and J. arcady Meyer, “Design of a bio-
inspired controller for dynamic soaring in a simulated unmanned aerial
vehicle,” Bioinspiration & Biomimetics, vol. 1, no. 3, pp. 76 – 88,
2006.

[8] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, 1989.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artificial Intelligence Research, vol. 4, pp. 237
– 285, 1996.

[10] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. of Robotics Research (IJRR), vol. 32, no. 11,
pp. 1238 – 1274, 2013.

[11] W. D. Smart, “Making reinforcement learning work on real robots,”
Ph.D. dissertation, Dept. of Computer Science, Brown University,
2002.

[12] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Autonomous Robots, vol. 27, pp. 55 – 73,
2009.

[13] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3,
no. 1, pp. 109–118, 1990.

[14] J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” Communications of the ACM, vol. 18, no. 5, pp. 509
– 517, 1975.

[15] L. Long-Ji, “Self-improving reactive agents based on reinforcement
learning, planning, and teaching,” Machine Learning, vol. 8, pp. 293–
321, 1992.

[16] J. Grenestedt and J. R. Spletzer, “Towards perpetual flight of a gliding
unmanned aerial vehicle in the jet stream,” in Proc. of the IEEE
Int. Conf. on Decision and Control (CDC), Atlanta, United States,
December 2010.

[17] B. P. Gerkey and K. Konolige, “Planning and control in unstructure
terrain,” in Proc. of the ICRA Workshop on Path Planning and
Costmaps, Passadena, United States, May 2008.

[18] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning
for mobile robots,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), Washington D.C., United States, May 2002.

3428

