
Dynamic Soaring in Hurricanes

Joachim Grenestedt
Mechanical Engineering and Mechanics

Lehigh University
Bethlehem, Pennsylvania

Corey Montella and John Spletzer
Computer Science and Engineering

Lehigh University
Bethlehem, Pennsylvania

Abstract—The potential for a gliding UAV to sustain
flight by dynamically soaring in a hurricane is investi-
gated. Leveraging extensive storm observations, the wind
profile of the hurricane eye is modeled as a continuous
function that is zero at the center and increases as a power
of the radius. We then derive the equations of motion for
a UAV flying in this wind field, and prove analytically
that if the wind field exponent n = 1, dynamic soaring
is not possible. This analytical result is also validated in
simulation. We also provide extensive simulation results
for the case where the wind field exponent n > 1. These
results indicate that dynamic soaring is in fact possible
for such storms, and the velocity gain for a single dynamic
soaring cycle is correlated with the wind field gradient.

I. INTRODUCTION & RELATED WORK

In this paper, we investigate the potential for a
gliding UAV to dynamically soar in the radial wind
gradients associated with a tropical cyclone, i.e.,
a hurricane. Dynamic soaring (DS) is a technique
whereby horizontal wind that varies in strength
or direction is used to support flight. Rayleigh is
usually credited for first suggesting that soaring
could be accomplished in a horizontal but non-
uniform wind field [1]. Seabirds like the albatross
are known to travel hundreds of kilometers in a
single day utilizing dynamic soaring [2]. Save for
an anecdotal flight in Australia in 1974, attempts
for sustained dynamic soaring of manned gliders
do not appear to have been fully successful at this
time. However, radio controlled hobby aircraft rou-
tinely dynamically soar in the steep wind gradients
on the leeward side of mountain ridges, and have
reached speeds over 600 km/hr [3].

In the traditional DS paradigm, the wind gra-
dient is in the vertical direction and wind speeds
increase with altitude (although this need not be
the case). The general soaring strategy for such
a wind field is for the aircraft to climb into the

wind gradient in order to gain altitude as well as
airspeed (or at least not lose too much airspeed),
and then dive with the wind to gain airspeed. Under
appropriate conditions, the energy gained from
such a trajectory can support perpetual flight. A
number of papers have been devoted to optimizing
trajectories of dynamically soaring aircraft, flying
either in near-ground wind gradients or in wind
gradients associated with high altitude jet streams.
These include the works of Boslough [4], Zhao [5],
Sachs and da Costa [6], Gordon [7], Akhtar et al.
[8], and Lawrance and Sukkarieh [9]. Deittert et
al. looked at the dynamic soaring problem using
differential flatness to transform the optimization
problem [10]. Our own work in this area includes
[11] and [12], where we investigated trajectory
generation for supporting perpetual flight in the jet
stream by dynamic soaring.

These previous results lead us to investigate the
potential for a gliding UAV to achieve sustained
dynamic soaring in the radial wind field associated
with a hurricane. If achievable, this could enable
long-term, automated, in-situ storm monitoring. On
the surface, the answer to the hurricane soaring
question would appear to be straightforward: By
flying away from the hurricane eye (heading into
the wind), turning downwind, and flying back
towards the eye, we would mimic the traditional
DS paradigm for vertical wind gradients. As we
shall see, the correct answer to this question is
significantly more complicated. Through both ana-
lytical and numerical results, we show that for one
standard hurricane wind model, dynamic soaring
is impossible using radial wind gradients alone.
However, we also provide numerical results that
indicate DS may be achievable for alternate wind
profiles with this same model. To our knowledge,



these are the first results reporting on exploiting
hurricane wind fields for sustained dynamic soar-
ing of UAVs.

II. HURRICANE MODEL

Hurricanes are a class of tropical cyclone that
originate in the Atlantic or Eastern Pacific oceans.
In the northern hemisphere, where hurricanes form,
strong winds cycle counter-clockwise around a
structure known as the hurricane eye, a typically
circular, low pressure region of relatively calm
winds. The diameters of hurricane eyes vary from
as small as 3 km [13] to as large as 370 km [14],
with an average diameter of around 45 km [15].
Winds at the center of the eye are typically still,
and increase radially to a maximum windspeed
at the hurricane eyewall. Hurricanes are ranked
and classified by maximum sustained wind speed,
which varies from 33 m/s to 70 m/s [16].
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Fig. 1. Example hurricane wind field. In this instance, Wmax =
64m/s, Rmax = 11000m, and n = 2.

The wind within the eye was modeled as a
parametric vortex as suggested by Willoughby et
al. [17]:
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where, Wmax is the maximum tangential wind
velocity, Rmax is the radius where the maximum
wind is encountered, n is the wind field exponent,
x and y are Cartesian coordinates, and r and θ are
polar coordinates in the hurricane wind field. A
visualization of this model is depicted in Figure 1
for n = 2. Note that the generalized time derivative
of the wind is the total derivative as seen by the
aircraft, i.e.
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For our analysis, we assume ∂Wx
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is zero. In

a first approximation of a hurricane eye it will
be assumed that the vertical wind is negligible
(Wz = 0), and that the other wind components
only depend on in-plane coordinates x and y; thus
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III. AIRCRAFT EQUATIONS OF MOTION

Let the UAV track relative to the air be

evx = cos γ sinψex + cos γ cosψey + sin γez (3)

where ψ is the aircraft heading angle measured
clockwise from North, γ is air-relative flight path
angle, and ei is a unit vector parallel to the Carte-
sian reference (inertia) frames; ex points East, ey
North, and ez up. When there is no roll

evy = cosψex − sinψey (4)
evz = sin γ sinψex + sin γ cosψey − cos γez (5)

The flight trajectory follows the air relative track
plus the wind drift

ṙ = ẋex + ẏey + żez

= V ev + W

= (V cos γ sinψ +Wx)ex+

(V cos γ cosψ +Wy)ey+

(V sin γ +Wz)ez

where x, y, and z are Cartesian coordinates, V is
airspeed, and a dot represents a time derivative.



As previously mentioned, in a first approxima-
tion of a hurricane eye it will be assumed that the
vertical wind is negligible (Wz = 0), and that the
other wind components only depend on in-plane
coordinates x and y; thus

ṙ =(V cos γ sinψ +Wx)ex+

(V cos γ cosψ +Wy)ey+

V sin γez (6)

The drag D on the aircraft is in the direction of
−ex, and the lift L on the aircraft is in the direction
of ez. Thus the forces acting on the aircraft are

F = −Dex + (L−mg)ez (7)

We can then equate the derivative of eq. (6) to
eq. (7) by Newton’s second law

F =mr̈

=m(V̇ cos γ sinψ − V sin γ sinψγ̇+

V cos γ cosψψ̇ + Ẇx)ex+

m(V̇ cos γ cosψ − V sin γ cosψγ̇−
V cos γ sinψψ̇ + Ẇy)ey+

m(V̇ sin γ + V cos γγ̇)ez

=−Dex + (L−mg)ez

=(−Dcosγ sinψ − L cosµ sin γ sinψ+

L sinµ cosψ)ex+

(−D cos γ cosψ − Lcosµ sin γ cosψ−
L sinµ sinψ)ey+

(−D sin γ + L cosµ cos γ −mg)ez

Scalar multiplication with eqs. (3) to (5) respec-
tively leads to the full set of equations of motion

ẋ = V cos γ sinψ +Wx (8)
ẏ = V cos γ cosψ +Wy (9)
ż = V sin γ (10)

mV̇ = −D −mg sin γ−
m cos γ

(
Ẇx sinψ + Ẇy cosψ

)
(11)

mV cos γψ̇ = L sinµ−mẆx cosψ+

mẆy sinψ (12)
mV γ̇ = −L cosµ−mg cos γ+

m sin γ
(
Ẇx sinψ + Ẇy cosψ

)
(13)

where V is the UAV airspeed, m is its mass, D is
the drag force, L is the lift force, µ is the roll, and
g is the acceleration due to gravity.

IV. ANALYTICAL RESULTS FOR n = 1

For our analysis, we used Hurricane Charley as
our archetype storm. According to [18], maximum
wind speeds at landfall for Charley were 125
knots (64.3 m/s). More importantly, the high winds
were constrained to a relatively small footprint of
6 nautical miles from the center (11 km). This
combination of high Wmax and low Rmax provides
wind gradients that, from our experience, could
support more traditional forms of dynamic soaring.

Observations from 493 storm profiles in [17]
indicate that a wind field exponent of n = 1 (i.e.,
wind velocities increasing linearly with radius)
would be appropriate for such a hurricane. With
this motivation, we now prove that for an aircraft
soaring in three dimensions, including gravity, but
neglecting drag, dynamic soaring in a hurricane
with wind field exponent n = 1 is not possible
by exploiting radial wind gradients alone.

First we simplify eqs. (1) and (2) for a hurricane
with wind field exponent n = 1
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The equations of motion are as in eqs. (8) to (10).
For n = 1, equation (11) becomes

V̇ = − cos γ sinψẆx − cos γ cosψẆy − g sin γ

= − ẋ−Wx

V
Ẇx −

ẏ −Wy

V
Ẇy − g

ż

V
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ẋ− g ż
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The time derivative of the air-relative kinetic en-
ergy is

Ė = mV V̇ =
mWmax

Rmax

(Wyẋ−Wxẏ) (14)



We find the total change in energy of a DS cycle
by integrating (14) over a closed loop

t1∫
t0

Ėdt =

t1∫
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Wxẏ −mgż
)
dt
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Wxdy −mgdz
)

by applying Stokes’ Theorem, we arrive at
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= 0

This result indicates that for a wind profile of n =
1, dynamic soaring of a UAV in a hurricane is not
possible. Note also that by neglecting drag, we are
presenting the best possible case for an aircraft.
Energy will be lost in practice.

V. TRAJECTORY OPTIMIZATION

To this point, we have analytically shown that
dynamic soaring in a wind field with exponent
n=1 is not feasible. However, in practice wind
profiles can vary dramatically from storm to storm
and over time. For example, in [17] hurricane
instances with similar wind speeds to our archetype
and wind profiles fitting n ≈ 2.5 and higher
were also observed. As our analytical results to
this point are limited to n=1, we decided to in-
vestigate alternate wind field exponents using a
non-linear optimization approach. Previously we
showed that a feasible dynamic soaring trajectory
can be modeled through non-linear constraints on
the aircraft state and control inputs [12]. We model
the hurricane soaring problem similarly.

The equations of motion that need to be solved
are eqs. (8) to (10) and eqs. (11) to (13), rewritten

as eqs. (15) to (17)

V̇ = − cos γ
(
sin γẆx + cosψẆy

)
− g sin γ

(15)

ψ̇ =
L
m

sinµ+ sinψẆy − cosψẆx

V cos γ
(16)

γ̇ =
L

Vm
cosµ− 1

V
g cos γ+

1

V
sin γ

(
sinψẆx + cosψẆy

)
(17)

where L is assumed to be

L = CLSw
ρV 2

2

where CL is the coefficient of lift, Sw is the wing
planform area, and ρ is the air density. If tf is the
total time for one complete dynamic soaring cycle,
then the optimization problem can be formulated
as

max V (tf )− V (0)

subject to the initial conditions

γ(0) = 0

the constraints

0 ≤ r ≤ R0

|ψ̇| ≤ ψ̇max

|µ̇| ≤ µ̇max

|ĊL| ≤ ĊL
max

|
...
CL| ≤

...
CL

max

and the terminal conditions

µ(0) = µ(tf )

γ(0) = γ(tf )

z(0) ≤ z

r(0) = r(tf )

θ(0) + ψ(0) = θ(tf ) + ψ(tf )

In words, we want to maximize the gain in velocity
between the beginning and the end of the cycle. At
the end of the cycle, the aircraft should have the
same attitude with respect to the hurricane center,
be at the same radius, and be at least at the same
altitude as at the start of the cycle. Further, the
aircraft starts at the bottom of the cycle, and begins
to climb. Since µ and CL are not governed by



equations of motion, we added rate limits to guar-
antee smooth results. R0 is a constraint set on the
maximum radius of the aircraft. We adjusted this
parameter to conduct the experiments in Section
VI. In addition to the above constraints, we also
place lower and upper bounds on V , ψ, γ, z, CL,
µ, Sw, m, and tf .

As in [12], the formulation does not lend itself
to an analytical solution, so we used a discrete
approximation, where tf was discretized as

tf =
k − 1

N − 1
tf , k = 1, 2, ..., N

Let X be the vector of all optimization variables

X = [s1, u1, ..., sN , uN , Sw,m, tf ]>

sk is a vector of state variables at time k, sk =
[Vk, ψk, γk, xk, yk, zk]>; and uk is a vector of con-
trol inputs at time k, uk = [CL,k, µk]>. Since we
neglect drag in our formulation, the aircraft design
parameters were reduced to only the wing planform
area (Sw) and aircraft mass (m) which were solved
for as part of the optimization. Finally we also
solved for tf . Thus, in total X has dimension
8N + 3.

The equations of motion, eqs. (8) to (10)
and (15) to (17), were modeled as nonlinear equal-
ity constraints on X , and can collectively be re-
ferred to as

ṡ = f(s,u)

As in [12], we approximate x as follows

sk+1 = sk +
tk+1 − tk

6
(fk + 4fm,k + fk)

sm,k =
1

2
(sk+1 + sk) +

tk+1 − tk
8

(fk − fk+1)

um,k =
1

2
(uk+1 + uk)

where fm,k is the midpoint value of f between tk
and tk+1, which is found by inserting midpoint
values of s and u into f .

VI. NUMERICAL RESULTS FOR n = 1, 2, 3

For our numerical results, we also used Hurri-
cane Charley as our archetype, with Wmax = 64
m/s and Rmax = 11, 000 m being fixed for all
simulations. For the wind field, we investigated
exponents of n = 1, 2, 3, corresponding to wind

velocity profiles that increased linearly, quadrati-
cally, and cubically with radius, respectively. The
former was used to validate our analytical results
from Section IV. Note all results reported in this
section were found using a non-linear interior-point
solver.
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Fig. 2. Dynamic soaring trajectory at r=11,000 m for n=2. The
hurricane windfield is blowing in the −x direction in this plot. The
aircraft climbs sharply against the wind, and then turns to dive with
the wind, gaining veloicty. It ends the cycle at the same attitude as
it started, but with an increase in airspeed of 4.57 m/s.

Figure 2 depicts a representative simulation re-
sult yielding a feasible dynamic soaring trajectory.
In this instance, n = 2 and the trajectory was
seeded at r = 11, 000 m. The hurricane wind field
is blowing in the −x direction at this location.
The aircraft begins the trajectory by climbing and
turning into the wind field, losing airspeed. It then
pitches down and dives with the wind field for the
remainder of the cycle, gaining airspeed. At the end
of the cycle the airspeed plot (Figure 3) indicates
that the aircraft’s airspeed increased by 4.57 m/s,
while the altitude plot (Figure 4) indicates the
aircraft ends the cycle at the same altitude as it
started. Thus, the aircraft has a net gain in energy
as it starts the next cycle – a successful dynamic
soaring maneuver. Figures 3-4 also show the UAV
airspeed and altitude vs. time for n=1 and n=3
under the same simulation conditions. Note that
the airspeed gain for n=1 is 0 as expected, and for
n=3 is higher than for n=2. We can attribute the
latter result to the higher wind gradients for n=3
in the vicinity of the eyewall.

We hypothesized that energy gain was a function
of the radius at which the UAV soars, and the
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Fig. 3. Airspeed vs. time for a gliding UAV at r=11,000m for
n = 1, 2, 3. For n = 1, there is no airspeed gain as expected.
However, for n = 2, 3, higher final airspeeds are achieved through
the dynamic soaring cycle. In all cases, Vmax was constrained to
200m/s.

wind field exponent of the hurricane. To test this,
we conducted three sets of simulations - one for
each hurricane exponent (n=1,2,3). In each set,
we ran 11 trials with seed trajectories at radii
from r=1,000 to r=11,000 meters, subject to the
following additional constraint on the maximum
radius

r ≤ Rmax − 1000j, j = 0...10

In an attempt to reduce experiment variability, we
fixed the aircraft parameters for all experiments
to those recovered from the simulation shown
in Figure 2. This converged to a solution with
Sw = 7.21 m2 and m = 79.58 kg. Results from
these experiments are summarized in Figure 6,
with the actual data shown as points and fitted
linear/quadratic models shown by lines. For n = 1,
at each radius the optimization returned a airspeed
gain less than 10−6 m/s, which is effectively zero
given our optimization tolerances. This was as
expected given our findings in Section IV. For
n = 2 or 3 however, there is an airspeed gain even
at r = 1000 m. The data also suggested that the
gain increases as a function of the radius. In an
attempt to formalize this relationship, we examined
the correlation between the empirically recovered
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Fig. 4. UAV altitude vs. time for n=1,2,3. In each case, the aircraft
starts at 0 altitude and ends the cycle at 0 altitude. Thus, for n = 1
energy remains neutral and for n = 2, 3 it has a net energy gain
after one cycle.

airspeed gains ∆V and G defined as
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which is an isotropic measure of the wind gradient.
The resulting correlation coefficient for n=2,3 was
very high (ρ > 0.999), indicating a linear rela-
tionship between the airspeed gain per cycle and
the wind gradient. These results are summarized in
Figure 5. Obtaining an analytical result to substan-
tiate this hypothesis is currently ongoing.

VII. DISCUSSION

In this paper, we investigated the potential for
a gliding UAV to dynamically soar within a hur-
ricane for long-term, in-situ storm monitoring.
We provided both analytical and numerical results
that indicate dynamic soaring may be possible for
hurricanes with an acceptable wind profile, but
physically impossible for others. In the former
case, numerical results indicate a linear relationship
between airspeed gain and wind field gradient.
Obtaining an analytical result to support these
findings is a topic of ongoing research.
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Fig. 5. Gradient measure G vs. cycle airspeed gain ∆V . Em-
pirical results suggest a strong linear relationship between the two
variables.

To date, our group’s research in dynamic soaring
aircraft has focused upon vertical wind gradients.
We are currently manufacturing a carbon fiber UAV
with a 6.5 meter wingspan capable of operating
under very high load factors for dynamic soaring.
Its potential for soaring in hurricanes will also be
investigated.
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